
JPL Java Coding Standard
JPL Institutional Coding Standard for the Java Programming Language

Version 1.0

Published March 31, 2014

1 Critical . 6
1.1 Arithmetic . 7
1.2 Concurrency . 13
1.3 Declarations . 45
1.4 Encapsulation . 51
1.5 Equality . 57
1.6 Exceptions . 72
1.7 Expressions . 76
1.8 Extensibility . 79
1.9 Incomplete Code . 84
1.10 Java objects . 88
1.11 Logic Errors . 102
1.12 Naming . 111
1.13 Random . 114
1.14 Resource Leaks . 116
1.15 Strings . 119
1.16 Types . 124

2 Important . 126
2.1 Arithmetic (1) . 127
2.2 Complexity . 131
2.3 Concurrency (1) . 136
2.4 Coupling . 140
2.5 Declarations (2) . 147
2.6 Duplicate Code . 150
2.7 Encapsulation (1) . 159
2.8 Equality (1) . 165
2.9 Exceptions (1) . 168
2.10 Expressions (1) . 173
2.11 Extensibility (1) . 177
2.12 Incomplete Code (1) . 180
2.13 Inefficient Code . 184
2.14 Java objects (2) . 192
2.15 JUnit . 212
2.16 Logic Errors (1) . 217
2.17 Magic Constants . 221
2.18 Naming (2) . 230
2.19 Random (1) . 238
2.20 Result Checking . 240
2.21 Size . 245
2.22 Spring . 255
2.23 Strings (1) . 273
2.24 Swing . 276
2.25 Types (2) . 281
2.26 Useless Code . 286

3 Advisory . 296
3.1 Declarations (1) . 297
3.2 Deprecated Code . 302
3.3 Documentation . 304
3.4 Java Objects (1) . 310

3.5 Naming (1) . 315
3.6 Statements . 321
3.7 Types (1) . 327

Overview

JPL Java Coding Standard v1.0 March 31, 2014. Page 4

JPL Java Coding Standard

Acknowledgements

This standard is based on the JPL Java Coding Standard developed by Klaus Havelund and Al Niessner. It was
developed as a collaboration between Jet Propulsion Laboratory (JPL) and Semmle Limited. The following
additional people at JPL have contributed to the standard via their comments: Eddie Benowitz, Dj Byrne, Bradley

Thomas Crockett, Thomas Huang, Clement, Bob Deen, Marti DeMore, Dan Dvorak, Gerard Holzmann, Mark
 Indictor, Rajeev Joshi, Ara Kassabian, Cin-Young Lee, Ken Peters and David Wagner.

Introduction

This document presents a JPL institutional coding standard for the Java programming language. The primary
purpose of the standard is to help Java programmers reduce the probability of run-time errors in their programs.
A secondary, but related, purpose is to improve on dimensions such as readability and maintainability of code.

The standard is meant for ground software programming. The restrictions on ground software are less severe
than the restrictions on flight software, mainly because of the richer resources available on ground software
computers, and the often less time critical nature of ground applications. However, note that JPL ground software
can indeed be mission critical (meaning that a loss of capability may lead to reduction in mission effectiveness).
Amongst the most important general differences from the JPL institutional C coding standard for flight software
references (JPL-C-STD) are: (1) the Java standard allows dynamic memory allocation (object creation) after
initialization, (2) the Java standard allows recursion, and (3) the Java standard does not require loop bounds to
be statically verifiable. Apart from these differences most other differences are due to the different nature of the
two languages.

The standard is a collaboration between the Laboratory for Reliable Software (LaRS) at the Jet Propulsion
(JPL) and Semmle Limited. Semmle develops and sells a static analyzer that analyzes Java code andLaboratory

checks for adherence to the rules in this standard.

Terminology

Throughout this document, we use the following terms to discuss software quality:
Rule – The coding standard consists of a set of rules. Each rule describes a coding convention that should
be avoided or adhered to, to help avoid coding mistakes, avoid bad programming practice, or otherwise
improve the quality of the software project. Rules are grouped by category (see table).
Violation – Code that breaks a rule.
Defect – A problem with the program, from coding mistakes through to user-reported problems concerning
the behavior of the program.

Rules

The rules are grouped into three high-level categories:

Critical - these rules must always be followed and violations of these rules must be corrected as soon as
possible.
Important - these rules should be followed and violations of these rules should be corrected where

Introduction

JPL Java Coding Standard v1.0 March 31, 2014. Page 5

practical.
Advisory - these rules represent good practice. Violations of these rules are allowed but not
recommended.

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 6

Critical

Rules in this category be followed and violations of these rules must be corrected as soon asmust always
possible after you identify them.

Rule types:

Arithmetic
Concurrency
Declarations
Encapsulation
Equality
Exceptions
Expressions
Extensibility
Incomplete Code
Java objects
Logic Errors
Naming
Random
Resource Leaks
Strings
Types

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 7

Arithmetic

Avoid casting the result of integer multiplication to type 'long'
Avoid implicit narrowing in compound assignment
Avoid type mismatch in conditional expressions
Avoid using octal literals
Do not test floating point equality

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 8

Avoid casting the result of integer multiplication to type 'long'

Category: > Critical Arithmetic

Description: Casting the result of an integer multiplication to type 'long' instead of casting before the
multiplication may cause overflow.

An integer multiplication that is assigned to a variable of type or returned from a method with return type long

 may cause unexpected arithmetic overflow.long

Recommendation

Casting to type before multiplying reduces the risk of arithmetic overflow.long

Example

In the following example, the multiplication expression assigned to causes overflow and results in the value j

 instead of .-1651507200 4000000000000000000

1 int i = 2000000000;
2 long j = i*i; // causes overflow

In the following example, the assignment to correctly avoids overflow by casting one of the operands to type k

.long

1 int i = 2000000000;
2 long k = i*(long)i; // avoids overflow

References

J. Bloch and N. Gafter, , Puzzle 3. Addison-Wesley, 2005.Java Puzzlers: Traps, Pitfalls, and Corner Cases
The Java Language Specification: .Multiplication Operator
Common Weakness Enumeration: .CWE-190: Integer Overflow or Wraparound
The CERT Oracle Secure Coding Standard for Java: .NUM00-J. Detect or prevent integer overflow

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.1
http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 9

Avoid implicit narrowing in compound assignment

Category: > Critical Arithmetic

Description: Compound assignment statements (for example 'intvar += longvar') that implicitly cast a
value of a wider type to a narrower type may result in information loss and numeric errors such as
overflows.

Compound assignment statements of the form or perform an implicit narrowing conversion if thex += y x *= y

type of is narrower than the type of . For example, is equivalent to , where is the typex y x += y x = (T)(x + y) T

of . This can result in information loss and numeric errors such as overflows.x

Recommendation

Ensure that the type of the left-hand side of the compound assignment statement is at least as wide as the type
of the right-hand side.

Example

If is of type and is of type , the expression is of type . However, the expression isx short y int x + y int x += y

equivalent to . The expression is cast to the type of the left-hand side of thex = (short) (x + y) x + y

assignment: , possibly leading to information loss.short

To avoid implicitly narrowing the type of , change the type of to . Then the types of and are bothx + y x int x x + y

 and there is no need for an implicit cast.int

References

J. Bloch and N. Gafter, , Puzzle 9. Addison-Wesley, 2005.Java Puzzlers: Traps, Pitfalls, and Corner Cases
The Java Language Specification: , .Compound Assignment Operators Narrowing Primitive Conversion
Common Weakness Enumeration: .CWE-190: Integer Overflow or Wraparound
The CERT Oracle Secure Coding Standard for Java: .NUM00-J. Detect or prevent integer overflow

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.1.3
http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 10

Avoid type mismatch in conditional expressions

Category: > Critical Arithmetic

Description: Using the '(p?e1:e2)' operator with different primitive types for the second and third operands
may cause unexpected results.

Conditional expressions of the form can yield unexpected results if and have distinct primitive(p ? e1 : e2) e1 e2

types.

Example

The following example illustrates the most confusing case, which occurs when one branch has type and thechar

other branch does not have type .char

1 int i = 0;
2 System.out.print(true ? 'x' : 0); // prints "x"
3 System.out.print(true ? 'x' : i); // prints "120"

This unexpected result is due to binary numeric promotion of from to . For details on the result type of'x' char int

the conditional operator, see the references.

Recommendation

When using the ternary conditional operator with numeric operands, the second and third operand should have
the same numeric type. This avoids potentially unexpected results caused by binary numeric promotion.

References

J. Bloch and N. Gafter, , Puzzle 8. Addison-Wesley, 2005.Java Puzzlers: Traps, Pitfalls, and Corner Cases
The Java Language Specification: .Conditional Operator ?

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.25

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 11

Avoid using octal literals

Category: > Critical Arithmetic

Description: An integer literal that starts with '0' may cause a problem. If the '0' is intentional, a
programmer may misread the literal as a decimal literal. If the '0' is unintentional and a decimal literal is
intended, the compiler treats the literal as an octal literal.

An integer literal consisting of a leading digit followed by one or more digits in the range is an octal literal.0 0-7

This can lead to two problems:

An octal literal can be misread by a programmer as a decimal literal.
A programmer might accidentally start a decimal literal with a zero, so that the compiler treats the decimal
literal as an octal literal. For example, is equal to , not .010 8 10

Recommendation

To avoid these problems:

Avoid using octal literals so that programmers do not confuse them with decimal literals. However, if you
need to use octal literals, you should add a comment to each octal literal indicating the intention to use
octal literals.
When typing decimal literals, be careful not to begin them with a zero accidentally.

References

J. Bloch and N. Gafter, , Puzzle 59. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
The Java Language Specification: .Integer Literals

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 12

Do not test floating point equality

Category: > Critical Arithmetic

Description: Equality tests on floating point values may lead to unexpected results.

Equality tests on floating point values may lead to unexpected results because of arithmetic imprecision. For
example, the expression evaluates to .23.42f==23.42 false

Recommendation

Instead of testing for between floating point values, check that the difference between the values isexact equality
within an appropriate error margin.

Alternatively, if you do not want any inaccuracy when testing for equality, use one of the following instead of
floating point values:

BigDecimal class. This can store decimal values with higher precision.
long type. Because this is an integer type, you must convert any decimal values to whole values. For
example, represent $1.43 as 143 cents.

Example

In the following example, evaluates to , even though you would expect it to evaluate to (0.1 + 0.2) == 0.3 false

. This is because of the imprecision of floating point data types.true

1 class NoComparisonOnFloats
2 {

 3 public static void main(String[] args)
 4 {
 5 System.out.println((0.1 + 0.2) == 0.3);
 6 }

7 }

In the following improved example, the test for equality is performed by calculating the difference between the two
values, and checking if the difference is within the error margin, .EPSILON

1 class NoComparisonOnFloats
2 {

 3 public static void main(String[] args)
 4 {
 5 final double EPSILON = 0.001;
 6 System.out.println(Math.abs((0.1 + 0.2) - 0.3) < EPSILON);
 7 }

8 }

References

J. Bloch, , Item 48. Addison-Wesley, 2008.Effective Java (second edition)
Numerical Computation Guide: (What Every Computer Scientist Should Know About Floating-Point

).Arithmetic

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 13

Concurrency

API Misuse
Synchronization
Thread Safety
Waiting

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 14

API Misuse

Avoid ineffective thread definitions
Avoid setting thread priorities
Avoid using 'notify'
Do not call 'Thread.yield'
Do not spin on field
Do not start a thread in a constructor

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 15

Avoid ineffective thread definitions

Category: > > Critical Concurrency API Misuse

Description: Thread instances that neither get an argument of type 'Runnable' passed to their constructor
nor override the 'Thread.run' method are likely to have no effect.

New threads can be defined using one of the following alternatives:

By extending the class and overriding its method.Thread run

By passing an argument of type to the constructor of the class.Runnable Thread

Thread instances that are defined using another approach are likely to have no effect.

Recommendation

To avoid empty thread instances, define new threads using one of the following alternatives:

By extending the class and overriding its method.Thread run

By passing an argument of type to the constructor of the class.Runnable Thread

Example

In the following example, class shows the definition of a thread that has no effect.Bad

1 class Bad{
2

 3 public void runInThread(){
 4 Thread thread = new Thread();
 5 thread.start();
 6 }

7
8 }

In the following example, class shows how to extend the class and override its GoodWithOverride Thread run

method, and class shows how to pass an argument of type to the constructor of the GoodWithRunnable Runnable

 class.Thread

$body

1 class GoodWithOverride{
2

 3 public void runInThread(){
 4 Thread thread = new Thread(){
 5 @Override
 6 public void run(){
 7 System.out.println("Doing something");
 8 }
 9 };
 10 thread.start;
 11 }

12
13 }
14
15 class GoodWithRunnable{
16

 17 public void runInThread(){
 18 Runnable thingToRun = new Runnable(){
 19 @Override
 20 public void run(){
 21 System.out.println("Doing something");
 22 }
 23 };

24
 25 Thread thread = new Thread(thingToRun());

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 16

 26 thread.start();
 27 }

28
29 }

References

Java API Documentation: .Thread
The Java Tutorials: .Defining and Starting a Thread

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 17

Avoid setting thread priorities

Category: > > Critical Concurrency API Misuse

Description: Setting thread priorities to control interactions between threads is not portable, and may not
have the desired effect.

Specifying thread priorities using calls to and is not portable and mayThread.setPriority Thread.getPriority

have adverse consequences such as starvation.

Recommendation

Avoid setting thread priorities to control interactions between threads. Using the default thread priority should be
sufficient for most applications.

However, if you need to enforce a specific synchronization order, use one of the following alternatives:

Waiting for a notification using the and methodswait notifyAll

Using the libraryjava.util.concurrent

In some cases, calls to may be appropriate to temporarily stop execution (provided that there is noThread.sleep

possibility for race conditions), but this is not generally recommended.

References

J. Bloch, , Item 72. Addison-Wesley, 2008.Effective Java (second edition)
Inform IT: .Adding Multithreading Capability to Your Java Applications

http://www.informit.com/articles/article.aspx?p=26326&seqNum=5

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 18

Avoid using 'notify'

Category: > > Critical Concurrency API Misuse

Description: Calling 'notify' instead of 'notifyAll' may fail to wake up the correct thread and cannot wake up
multiple threads.

Calls to the method rather than may fail to wake up the correct thread if an object's monitornotify notifyAll

(intrinsic lock) is used for multiple conditions. only wakes up a single arbitrary thread that is waiting on thenotify

object's monitor, whereas wakes up all such threads.notifyAll

Recommendation

Ensure that the call to instead of is a correct and desirable optimization. If not, call notify notifyAll notifyAll

instead.

Example

In the following example, the methods and both use to tell any waiting threads that anproduce consume notify

object has been added or removed from the buffer. However, this means that only thread is notified. Theone
woken-up thread might not be able to proceed due to its condition being false, immediately going back to the
waiting state. As a result no progress is made.

1 class ProducerConsumer {
 2 private static final int MAX_SIZE=3;
 3 private List<Object> buf = new ArrayList<Object>();

4
 5 public synchronized void produce(Object o) {
 6 while (buf.size()==MAX_SIZE) {
 7 try {
 8 wait();
 9 }
 10 catch (InterruptedException e) {
 11 ...
 12 }
 13 }
 14 buf.add(o);
 15 notify(); // 'notify' is used
 16 }

17
 18 public synchronized Object consume() {

19
 20 while (buf.size()==0) {
 21 try {
 22 wait();
 23 }
 24 catch (InterruptedException e) {
 25 ...
 26 }
 27 }
 28 Object o = buf.remove(0);
 29 notify(); // 'notify' is used
 30 return o;
 31 }

32 }

When using instead of , threads are notified, and if there are any threads that could proceed,notifyAll notify all
we can be sure that at least one of them will do so.

References

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 19

J. Bloch. , p. 277. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , .notify() notifyAll()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notify%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 20

Do not call 'Thread.yield'

Category: > > Critical Concurrency API Misuse

Description: Calling 'Thread.yield' may have no effect, and is not a reliable way to prevent a thread from
taking up too much execution time.

The method is a non-portable and underspecified operation. It may have no effect, and is not aThread.yield

reliable way to prevent a thread from taking up too much execution time.

Recommendation

Use alternative ways of preventing a thread from taking up too much execution time. Communication between
threads should normally be implemented using some form of waiting for a notification using the and wait

 methods or by using the library.notifyAll java.util.concurrent

In some cases, calls to may be appropriate to temporarily cease execution (provided there is noThread.sleep

possibility for race conditions), but this is not generally recommended.

References

J. Bloch, , Item 72. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , , , , Thread.yield() Object.wait() Object.notifyAll() java.util.concurrent

.Thread.sleep()

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#yield%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep%28long%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 21

Do not spin on field

Category: > > Critical Concurrency API Misuse

Description: Repeatedly reading a non-volatile field within the condition of an empty loop may result in an
infinite loop.

Repeatedly reading a non-volatile field within the condition of an empty loop statement may result in an infinite
loop, since a compiler optimization may move this field access out of the loop.

Example

In the following example, the method repeatedly tests the field in a loop. The method repeats thespin done

while-loop until the value of the field is set by another thread. However, the compiler could optimize the codedone

as shown in the second code snippet, because the field is not marked as and there are nodone volatile

statements in the body of the loop that could change the value of . The optimized version of loopsdone spin

forever, even when another thread would set to .done true

1 class Spin {
 2 public boolean done = false;

3
 4 public void spin() {
 5 while(!done){
 6 }
 7 }

8 }
9
10 class Spin { // optimized

 11 public boolean done = false;
12

 13 public void spin() {
 14 boolean cond = done;
 15 while(!cond){
 16 }
 17 }

18 }

Recommendation

Ensure that access to this field is properly synchronized. Alternatively, avoid spinning on the field and instead use
the and methods or the library to communicate between threads.wait notifyAll java.util.concurrent

References

The Java Language Specification: .Threads and Locks

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 22

Do not start a thread in a constructor

Category: > > Critical Concurrency API Misuse

Description: Starting a thread within a constructor may cause the thread to start before any subclass
constructor has completed its initialization, causing unexpected results.

Starting a thread within a constructor may cause unexpected results. If the class is extended, the thread may
start before the subclass constructor has completed its initialization, which may not be intended.

Recommendation

Avoid starting threads in constructors. Typically, the constructor of a class only the thread object, andconstructs
a separate method should be provided to the thread object created by the constructor.start start

Example

In the following example, because the constructor implicitly calls the constructor, the thread created inTest Super

the constructor may start before has been initialized. Therefore, the program may output "hello "Super this.name

followed by a null string.

1 class Super {
 2 public Super() {
 3 new Thread() {
 4 public void run() {
 5 System.out.println(Super.this.toString());
 6 }
 7 }.start(); // BAD: The thread is started in the constructor of 'Super'.
 8 }

9
 10 public String toString() {
 11 return "hello";
 12 }

13 }
14
15 class Test extends Super {

 16 private String name;
 17 public Test(String nm) {
 18 // The thread is started before
 19 // this line is run
 20 this.name = nm;
 21 }

22
 23 public String toString() {
 24 return super.toString() + " " + name;
 25 }

26
 27 public static void main(String[] args) {
 28 new Test("my friend");
 29 }

30 }

In the following modified example, the thread created in the constructor is not started within the constructor;Super

 starts the thread after has been initialized. This results in the program outputting "hello my friend".main this.name

1 class Super {
 2 Thread thread;
 3 public Super() {
 4 thread = new Thread() {
 5 public void run() {
 6 System.out.println(Super.this.toString());

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 23

 7 }
 8 };
 9 }

10
 11 public void start() { // good
 12 thread.start();
 13 }
 14
 15 public String toString() {
 16 return "hello";
 17 }

18 }
19
20 class Test extends Super {

 21 private String name;
 22 public Test(String nm) {
 23 this.name = nm;
 24 }

25
 26 public String toString() {
 27 return super.toString() + " " + name;
 28 }

29
 30 public static void main(String[] args) {
 31 Test t = new Test("my friend");
 32 t.start();
 33 }

34 }

References

IBM developerWorks: .Don't start threads from within constructors

http://www.ibm.com/developerworks/java/library/j-jtp0618/index.html#4

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 24

Synchronization

Avoid data races by accessing shared variables under synchronization
Avoid empty synchronized blocks
Avoid inconsistent synchronization for 'writeObject'
Avoid inconsistent synchronization of overriding methods
Avoid synchronizing 'set' but not 'get'
Do not synchronize on a field and update it

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 25

Avoid data races by accessing shared variables under synchronization

Category: > > Critical Concurrency Synchronization

Description: If a field is mostly accessed in a synchronized context, but occasionally accessed in a
non-synchronized way, the non-synchronized accesses may lead to race conditions.

If a field is mostly accessed in a synchronized context, but occasionally accessed in a non-synchronized way, the
non-synchronized accesses may lead to race conditions.

Recommendation

Ensure that the non-synchronized field accesses are made synchronized, if required.

Example

In the following example, is accessed in a synchronized way in cases. If iscounter all but one modifyCounter

called by a large number of threads that are running concurrently, the value of at the end of each callcounter

may not be zero. This is because the non-synchronized statement could be interleaved with updates to the
counter that are performed by the other threads.

1 class MultiThreadCounter {
 2 public int counter = 0;

3
 4 public void modifyCounter() {
 5 synchronized(this) {
 6 counter--;
 7 }
 8 synchronized(this) {
 9 counter--;
 10 }
 11 synchronized(this) {
 12 counter--;
 13 }
 14 counter = counter + 3; // No synchronization
 15 }

16 }

To correct this, the last statement of should be enclosed in a statement.modifyCounter synchronized

References

The Java Language Specification: .Synchronization

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 26

Avoid empty synchronized blocks

Category: > > Critical Concurrency Synchronization

Description: Empty synchronized blocks may indicate the presence of incomplete code or incorrect
synchronization, and may lead to concurrency problems.

Empty synchronized blocks suspend execution until a lock can be acquired, which is then released immediately.
This is unlikely to achieve the desired effect and may indicate the presence of incomplete code or incorrect
synchronization. It may also lead to concurrency problems.

Recommendation

Check which code needs to be synchronized. Any code that requires synchronization on the given lock should be
placed within the synchronized block.

References

The Java Language Specification: .The synchronized Statement
The Java Tutorials: .Synchronization

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 27

Avoid inconsistent synchronization for 'writeObject'

Category: > > Critical Concurrency Synchronization

Description: Classes with a synchronized 'writeObject' method but no other synchronized methods
usually lack a sufficient level of synchronization.

Classes with a synchronized method but no other synchronized methods usually lack a sufficientwriteObject

level of synchronization. If any mutable state of this class can be modified without proper synchronization, the
serialization using the method may result in an inconsistent state.writeObject

Recommendation

See if synchronization is necessary on methods other than to make the class thread-safe. AnywriteOject

methods that access or modify the state of an object of this class should usually be synchronized as well.

References

The Java Language Specification: .Synchronization

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 28

Avoid inconsistent synchronization of overriding methods

Category: > > Critical Concurrency Synchronization

Description: If a synchronized method is overridden in a subclass, and the overriding method is not
synchronized, the thread-safety of the subclass may be broken.

If a synchronized method is overridden in a subclass, the compiler does not require the overriding method to be
synchronized. However, if the overriding method is not synchronized, the thread-safety of the subclass may be
broken.

Recommendation

Ensure that the overriding method is synchronized, if necessary.

References

The Java Language Specification: .Synchronization
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 29

Avoid synchronizing 'set' but not 'get'

Category: > > Critical Concurrency Synchronization

Description: If a class has a synchronized 'set' method, and a similarly-named 'get' method is not also
synchronized, calls to the 'get' method may not return a consistent state for the object.

If a class has a synchronized method and a similarly-named method is not also synchronized, calls to the set get

 method may not return a consistent state for the object.get

Recommendation

Synchronize read operations as well as write operations. You should usually synchronize the method.get

References

The Java Language Specification: .Synchronization

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 30

Do not synchronize on a field and update it

Category: > > Critical Concurrency Synchronization

Description: Synchronizing on a field and updating that field while the lock is held is unlikely to provide
the desired thread safety.

A block of code that synchronizes on a field and updates that field while the lock is held is unlikely to provide the
desired thread safety. Such a synchronized block does not prevent multiple unsynchronized assignments to that
field because it obtains a lock on the object stored the field rather than the field itself.in

Recommendation

Instead of synchronizing on the field itself, consider synchronizing on a separate lock object when you want to
avoid simultaneous updates to the field. You can do this by declaring a synchronized method and using it for any
field updates.

Example

In the following example, in class A, synchronization takes place on the field that is updated in the body of the
 method.setField

1 public class A {
 2 private Object field;
 3
 4 public void setField(Object o){
 5 synchronized (field){ // BAD: synchronize on the field to be updated
 6 field = o;
 7 // ... more code ...
 8 }
 9 }

10 }

In class B, the recommended approach is shown, where synchronization takes place on a separate lock object.

1 public class B {
 2 private final Object lock = new Object();
 3 private Object field;

4
 5 public void setField(Object o){
 6 synchronized (lock){ // GOOD: synchronize on a separate lock object
 7 field = o;
 8 // ... more code ...
 9 }
 10 }

11 }

References

The Java Language Specification: , .The synchronized Statement synchronized Methods
The Java Tutorials: .Lock Objects

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.3.6
http://docs.oracle.com/javase/tutorial/essential/concurrency/newlocks.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 31

Thread Safety

Avoid lazy initialization of a static field
Avoid static fields of type 'DateFormat' (or its descendants)
Ensure that a method releases locks on exit

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 32

Avoid lazy initialization of a static field

Category: > > Critical Concurrency Thread Safety

Description: Initializing a static field without synchronization can be problematic in a multi-threaded
context.

The tactic of initializing a static field the first time it is used, known as "lazy initialization", can be problematic in a
multi-threaded context when used without proper synchronization. If a separate thread starts executing before the
field is initialized, the thread may see an incompletely initialized object.

Recommendation

If lazy initialization is desirable for performance reasons, the best solution is usually to declare the enclosing
method . Otherwise, avoid lazy initialization and initialize static fields using static initializers. A thirdsynchronized

possibility is to declare the field and use the double-checked locking idiom as explained in the articlevolatile

referenced below. As the article points out, it is crucial to declare the field : double-checked locking byvolatile

itself is correct under the Java memory model.not

Example

In the following example, the static field is initialized without synchronization.resource

1 class Singleton {
 2 private static Resource resource;

3
 4 public Resource getResource() {
 5 if(resource == null)
 6 resource = new Resource(); // Lazily initialize "resource"
 7 return resource;
 8 }

9 }

In the following modification of the above example, uses the recommended approach of using a staticSingleton

initializer to initialize .resource

1 class Singleton {
 2 private static Resource resource;

3
 4 static {
 5 resource = new Resource(); // Initialize "resource" only once
 6 }
 7
 8 public Resource getResource() {
 9 return resource;
 10 }

11 }

References

University of Maryland Department of Computer Science: The "Double-Checked Locking is Broken"
.Declaration

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 33

Avoid static fields of type 'DateFormat' (or its descendants)

Category: > > Critical Concurrency Thread Safety

Description: Static fields of type 'DateFormat' (or its descendants) should be avoided because the class
'DateFormat' is not thread-safe.

Static fields of type or its descendants should be avoided because the class isjava.text.DateFormat DateFormat

not thread-safe.

Recommendation

Use instance fields instead and synchronize access where necessary.

Example

In the following example, declares a static field of type . When instancesDateFormattingThread dateF DateFormat

of are created and run by , erroneous results are output because DateFormattingThread DateFormatThreadUnsafe

 is shared by all instances of .dateF DateFormattingThread

1 class DateFormattingThread implements Runnable {
 2 private static DateFormat dateF = new SimpleDateFormat("yyyyMMdd"); // Static field declared

3
 4 public void run() {
 5 for(int i=0; i < 10; i++){
 6 try {
 7 Date d = dateF.parse("20121221");
 8 System.out.println(d);
 9 } catch (ParseException e) { }
 10 }
 11 }

12 }
13
14 public class DateFormatThreadUnsafe {

 15
 16 public static void main(String[] args) {
 17 for(int i=0; i<100; i++){
 18 new Thread(new DateFormattingThread()).start();
 19 }
 20 }

21
22 }

In the following modification of the above example, declares an field of type DateFormattingThread instance dateF

. When instances of are created and run by , correctDateFormat DateFormattingThread DateFormatThreadUnsafeFix

results are output because there is a separate instance of for each instance of .dateF DateFormattingThread

1 class DateFormattingThread implements Runnable {
 2 private DateFormat dateF = new SimpleDateFormat("yyyyMMdd"); // Instance field declared

3
 4 public void run() {
 5 for(int i=0; i < 10; i++){
 6 try {
 7 Date d = dateF.parse("20121221");
 8 System.out.println(d);
 9 } catch (ParseException e) { }
 10 }
 11 }

12 }
13
14 public class DateFormatThreadUnsafeFix {

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 34

 15
 16 public static void main(String[] args) {
 17 for(int i=0; i<100; i++){
 18 new Thread(new DateFormattingThread()).start();
 19 }
 20 }

21
22 }

References

Java API Documentation: .java.text.DateFormat synchronization

http://docs.oracle.com/javase/6/docs/api/java/text/DateFormat.html#synchronization

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 35

Ensure that a method releases locks on exit

Category: > > Critical Concurrency Thread Safety

Description: Methods that acquire a lock without releasing it on method exit may cause deadlock.

If a method acquires a lock and some of the exit paths from the method do not release the lock then this may
cause deadlock.

Recommendation

Ensure that all exit paths of the method release the lock.

Example

In the following example, acquires a lock but releases it only some of the time, dependent onLockingThread.run

the result of a random number generator. This means that, of the 10 threads that are started by
, only the first few are likely to finish running. The first thread to acquire the lock but notUnreleasedLock.main

release it prevents the next thread from completing execution.

1 class LockingThread implements Runnable {
 2 private static ReentrantLock l = new ReentrantLock();

3
 4 public void run() {
 5 l.lock(); // Acquire lock
 6 System.out.println("Got lock");
 7 if(new Random().nextInt(2) == 0){
 8 l.unlock(); // Release lock only some of the time
 9 }
 10 }

11 }

To avoid this problem, should release the lock (using) each time that it is run.LockingThread.run l.unlock();

References

Java API Documentation: .java.util.concurrent.Lock

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Lock.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 36

Waiting

Avoid calling 'Object.wait' while two locks are held
Avoid calling 'Thread.sleep' with a lock held
Avoid calling 'wait' on a 'Condition' interface
Avoid controlling thread interaction by using ineffective or wasteful methods
Do not call 'wait' outside a loop

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 37

Avoid calling 'Object.wait' while two locks are held

Category: > > Critical Concurrency Waiting

Description: Calling 'Object.wait' while two locks are held may cause deadlock.

Calling while two locks are held may cause deadlock, because only one lock is released by .Object.wait wait

Recommendation

See if one of the locks should continue to be held while waiting for a condition on the other lock. If not, release
one of the locks before calling .Object.wait

Example

In the following example of the problem, locks both and before it reads the value of printText idLock textLock

. It then calls , which releases the lock on . However, needs to lock buttext textLock.wait textLock setText idLock

it cannot because is still locked by . Thus, deadlock is caused.idLock printText

1 class WaitWithTwoLocks {
2

 3 private final Object idLock = new Object();
 4 private int id = 0;

5
 6 private final Object textLock = new Object();
 7 private String text = null;

8
 9 public void printText() {
 10 synchronized (idLock) {
 11 synchronized (textLock) {
 12 while(text == null)
 13 try {
 14 textLock.wait(); // The lock on "textLock" is released but not the
 15 // lock on "idLock".
 16 }
 17 catch (InterruptedException e) { ... }
 18 System.out.println(id + ":" + text);
 19 text = null;
 20 textLock.notifyAll();
 21 }
 22 }
 23 }

24
 25 public void setText(String mesg) {
 26 synchronized (idLock) { // "setText" needs a lock on "idLock" but "printText" already
 27 // holds a lock on "idLock", leading to deadlock
 28 synchronized (textLock) {
 29 id++;
 30 text = mesg;
 31 idLock.notifyAll();
 32 textLock.notifyAll();
 33 }
 34 }
 35 }
 36 }

In the following modification of the above example, and are included in the class . The method id text Message

 synchronizes on the field before it reads the value of . It then calls ,printText message message.text message.wait

which releases the lock on . This enables to lock so that it can proceed.message setText message

1 class WaitWithTwoLocksGood {

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 38

2
 3 private static class Message {
 4 public int id = 0;
 5 public String text = null;
 6 }

7
 8 private final Message message = new Message();

9
 10 public void printText() {
 11 synchronized (message) {
 12 while(message.txt == null)
 13 try {
 14 message.wait();
 15 }
 16 catch (InterruptedException e) { ... }
 17 System.out.println(message.id + ":" + message.text);
 18 message.text = null;
 19 message.notifyAll();
 20 }
 21 }

22
 23 public void setText(String mesg) {
 24 synchronized (message) {
 25 message.id++;
 26 message.text = mesg;
 27 message.notifyAll();
 28 }
 29 }
 30 }

References

Java API Documentation: .Object.wait()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 39

Avoid calling 'Thread.sleep' with a lock held

Category: > > Critical Concurrency Waiting

Description: Calling 'Thread.sleep' with a lock held may lead to very poor performance or even deadlock.

Calling with a lock held may lead to very poor performance or even deadlock. This is because Thread.sleep

 does not cause a thread to release its locks.Thread.sleep

Recommendation

 should be called only outside of a block. However, a better way for threads to yieldThread.sleep synchronized

execution time to other threads may be to use either of the following solutions:

The libraryjava.util.concurrent

The and methodswait notifyAll

Example

In the following example of the problem, two threads, and , are started. Both threadsStorageThread OtherThread

output a message to show that they have started but then locks and goes to sleep. TheStorageThread counter

lock prevents from locking , so it has to wait until has woken up and unlocked OtherThread counter StorageThread

 before it can continue.counter

1 class StorageThread implements Runnable{
 2 public static Integer counter = 0;
 3 private static final Object LOCK = new Object();

4
 5 public void run() {
 6 System.out.println("StorageThread started.");
 7 synchronized(LOCK) { // "LOCK" is locked just before the thread goes to sleep
 8 try {
 9 Thread.sleep(5000);
 10 } catch (InterruptedException e) { ... }
 11 }
 12 System.out.println("StorageThread exited.");
 13 }

14 }
15
16 class OtherThread implements Runnable{

 17 public void run() {
 18 System.out.println("OtherThread started.");
 19 synchronized(StorageThread.LOCK) {
 20 StorageThread.counter++;
 21 }
 22 System.out.println("OtherThread exited.");
 23 }

24 }
25
26 public class SleepWithLock {

 27 public static void main(String[] args) {
 28 new Thread(new StorageThread()).start();
 29 new Thread(new OtherThread()).start();
 30 }

31 }

To avoid this problem, should call outside the block instead, so that StorageThread Thread.sleep synchronized

 is unlocked.counter

References

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 40

Java API Documentation: , , , .Thread.sleep() Object.wait() Object.notifyAll() java.util.concurrent

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep%28long%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html#package_description

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 41

Avoid calling 'wait' on a 'Condition' interface

Category: > > Critical Concurrency Waiting

Description: Calling 'wait' on a 'Condition' interface may result in unexpected behavior and is probably a
typographical error.

Calling on an object of type may result in unexpected behaviorwait java.util.concurrent.locks.Condition

because is a method of the class, not the interface itself. Such a call is probably await Object Condition

typographical error: typing "wait" instead of "await".

Recommendation

Instead of , use one of the methods.Object.wait Condition.await

References

Java API Documentation: .java.util.concurrent.Condition

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 42

Avoid controlling thread interaction by using ineffective or wasteful methods

Category: > > Critical Concurrency Waiting

Description: Calling 'Thread.sleep' to control thread interaction is less effective than waiting for a
notification and may also result in race conditions. Merely synchronizing over shared variables in a loop to
control thread interaction may waste system resources and cause performance problems.

Trying to control thread interaction by periodically calling within a loop while waiting for a conditionThread.sleep

to be satisfied is less effective than waiting for a notification. This is because the waiting thread may either sleep
for an unnecessarily long time or wake up too frequently. This approach may also result in race conditions and,
therefore, incorrect code.

Trying to control thread interaction by repeatedly checking a synchronized data structure without calling
 or waiting for a notification may waste a lot of system resources and cause noticeable performanceThread.sleep

problems.

Recommendation

See if communication between threads can be improved by using either of the following solutions:

The library, preferablyjava.util.concurrent

The and methodsObject.wait Object.notifyAll

If following one of these recommendations is not feasible, ensure that race conditions cannot occur and precise
timing is not required for program correctness.

Example

In the following example, the thread sleeps for an unnecessarily long time (up to five seconds) until itReceiver

has received the message.

1 class Message {
 2 public String text = "";

3 }
4
5 class Receiver implements Runnable {

 6 private Message message;
 7 public Receiver(Message msg) {
 8 this.message = msg;
 9 }
 10 public void run() {
 11 while(message.text.isEmpty()) {
 12 try {
 13 Thread.sleep(5000); // Sleep while waiting for condition to be satisfied
 14 } catch (InterruptedException e) { }
 15 }
 16 System.out.println("Message Received at " + (System.currentTimeMillis()/1000));
 17 System.out.println(message.text);
 18 }

19 }
20
21 class Sender implements Runnable {

 22 private Message message;
 23 public Sender(Message msg) {
 24 this.message = msg;
 25 }
 26 public void run() {
 27 System.out.println("Message sent at " + (System.currentTimeMillis()/1000));
 28 message.text = "Hello World";

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 43

 29 }
30 }
31
32 public class BusyWait {

 33 public static void main(String[] args) {
 34 Message msg = new Message();
 35 new Thread(new Receiver(msg)).start();
 36 new Thread(new Sender(msg)).start();
 37 }

38 }

In the following modification of the above example, the thread uses the recommended approach ofReceiver

waiting for a notification that the message has been sent. This means that the thread can respond immediately
instead of sleeping.

1 class Message {
 2 public String text = "";

3 }
4
5 class Receiver implements Runnable {

 6 private Message message;
 7 public Receiver(Message msg) {
 8 this.message = msg;
 9 }
 10 public void run() {
 11 synchronized(message) {
 12 while(message.text.isEmpty()) {
 13 try {
 14 message.wait(); // Wait for a notification
 15 } catch (InterruptedException e) { }
 16 }
 17 }
 18 System.out.println("Message Received at " + (System.currentTimeMillis()/1000));
 19 System.out.println(message.text);
 20 }

21 }
22
23 class Sender implements Runnable {

 24 private Message message;
 25 public Sender(Message msg) {
 26 this.message = msg;
 27 }
 28 public void run() {
 29 System.out.println("Message sent at " + (System.currentTimeMillis()/1000));
 30 synchronized(message) {
 31 message.text = "Hello World";
 32 message.notifyAll(); // Send notification
 33 }
 34 }

35 }
36
37 public class BusyWait {

 38 public static void main(String[] args) {
 39 Message msg = new Message();
 40 new Thread(new Receiver(msg)).start();
 41 new Thread(new Sender(msg)).start();
 42 }

43 }

References

J. Bloch, , Item 72. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , , .Object.wait() Object.notifyAll() java.util.concurrent
The Java Tutorials: , .Guarded Blocks High Level Concurrency Objects

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html#package_description
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/highlevel.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 44

Do not call 'wait' outside a loop

Category: > > Critical Concurrency Waiting

Description: Calling 'wait' outside a loop may result in the program continuing before the expected
condition is met.

Calling outside of a loop may cause problems because the thread does not go back to sleep after aObject.wait

spurious wake-up call. This results in the program continuing before the expected condition is met.

Recommendation

Ensure that is called within a loop that tests for the condition that the thread is waiting for. This ensures thatwait

the program only proceeds to execute when the relevant condition is true. Note that the thread that calls onwait

an object must be the owner of that object's monitor.

Example

In the following example, is called within a loop until the condition is true, at which point theobj.wait while

program continues with the next statement after the loop:

1 synchronized (obj) {
 2 while (<condition is false>) obj.wait();
 3 // condition is true, perform appropriate action ...

4 }

References

J. Bloch, , p. 276. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: .Object.wait()
The Java Tutorials: .Guarded Blocks

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 45

Declarations

Avoid ambiguity when calling a method that is in both a superclass and an outer class
Avoid confusing non-override of package-private method
Avoid hiding a field in a super class
Include 'break' in a 'case' statement

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 46

Avoid ambiguity when calling a method that is in both a superclass and an outer class

Category: > Critical Declarations

Description: An unqualified call to a method that exists with the same signature in both a superclass and
an outer class is ambiguous.

If a call is made to a method from an inner class A, and a method of that name is defined in both a superclass of
A and an outer class of A, it is not clear to a programmer which method is intended to be called.

Example

In the following example, it is not clear whether the call to calls the method that is defined in printMessage Outer

or .Super

1 public class Outer
2 {

 3 void printMessage() {
 4 System.out.println("Outer");
 5 }
 6
 7 class Inner extends Super
 8 {
 9 void ambiguous() {
 10 printMessage(); // Ambiguous call
 11 }
 12 }
 13
 14 public static void main(String[] args) {
 15 new Outer().new Inner().ambiguous();
 16 }

17 }
18
19 class Super
20 {

 21 void printMessage() {
 22 System.out.println("Super");
 23 }

24 }

Inherited methods take precedence over methods in outer classes, so the method in the superclass is called.
However, such situations are a potential cause of confusion and defects.

Recommendation

Resolve the ambiguity by explicitly qualifying the method call:

To specify the outer class, prefix the method with .Outer.this.

To specify the superclass, prefix the method with .super.

In the above example, the call to could be replaced by either or printMessage Outer.this.printMessage

, depending on which method you intend to call. To preserve the behavior in the example, usesuper.printMessage

.super.printMessage

References

Inner Classes Specification: .What are top-level classes and inner classes?

http://tns-www.lcs.mit.edu/manuals/java-1.1.1/guide/innerclasses/spec/innerclasses.doc1.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 47

Avoid confusing non-override of package-private method

Category: > Critical Declarations

Description: A method that appears to override another method but does not, because the declaring
classes are in different packages, is potentially confusing.

If a method is declared with default access (that is, not private, protected, nor public), it can only be overridden by
methods in the same package. If a method of the same signature is defined in a subclass in a different package,
it is a completely separate method and no overriding occurs.

Code like this can be confusing for other programmers, who have to understand that there is no overriding
relation, check that the original programmer did not intend one method to override the other, and avoid mixing up
the two methods by accident.

Recommendation

In cases where there is intentionally no overriding, the best solution is to rename one or both of the methods to
clarify their different purposes.

If one method is supposed to override another method that is declared with default access in another package,
the access of the method must be changed to or . Alternatively, the classes must be moved topublic protected

the same package.

Example

In the following example, does not override because one method is inPhotoResizerWidget.width Widget.width

package and one method is in package .gui gui.extras

1 // File 1
2 package gui;
3
4 abstract class Widget
5 {

 6 // ...
7

 8 // Return the width (in pixels) of this widget
 9 int width() {
 10 // ...
 11 }

12
 13 // ...

14 }
15
16 // File 2
17 package gui.extras;
18
19 class PhotoResizerWidget extends Widget
20 {

 21 // ...
 22
 23 // Return the new width (of the photo when resized)
 24 public int width() {
 25 // ...
 26 }
 27
 28 // ...

29 }

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 48

Assuming that no overriding is intentional, one or both of the methods should be renamed. For example,
 would be better named .PhotoResizerWidget.width PhotoResizerWidget.newPhotoWidth

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: .8.4.8.1 Overriding (by Instance Methods)

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 49

Avoid hiding a field in a super class

Category: > Critical Declarations

Description: Hiding a field in a superclass by redeclaring it in a subclass might be unintentional,
especially if references to the hidden field are not qualified using 'super'.

A field that has the same name as a field in a superclass the field in the superclass. Such hiding might behides
unintentional, especially if there are no references to the hidden field using the qualifier. In any case, itsuper

makes code more difficult to read.

Recommendation

Ensure that any hiding is intentional. For clarity, it may be better to rename the field in the subclass.

Example

In the following example, the programmer unintentionally added an field to , which hides the fieldage Employee age

in . The constructor in sets the field in to 20 but the field in is still 0. ThisPerson Person age Person age Employee

means that the program outputs 0, which is probably not what was intended.

1 public class FieldMasksSuperField {
 2 static class Person {
 3 protected int age;
 4 public Person(int age)
 5 {
 6 this.age = age;
 7 }
 8 }

9
 10 static class Employee extends Person {
 11 protected int age; // This field hides 'Person.age'.
 12 protected int numberOfYearsEmployed;
 13 public Employee(int age, int numberOfYearsEmployed)
 14 {
 15 super(age);
 16 this.numberOfYearsEmployed = numberOfYearsEmployed;
 17 }
 18 }

19
 20 public static void main(String[] args) {
 21 Employee e = new Employee(20, 2);
 22 System.out.println(e.age);
 23 }

24 }

To fix this, delete the declaration of on line 11.age

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
The Java Tutorials: .Hiding Fields

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/IandI/hidevariables.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 50

Include 'break' in a 'case' statement

Category: > Critical Declarations

Description: A 'case' statement that does not contain a 'break' statement allows execution to 'fall through'
to the next 'case', which may not be intended.

In a statement, execution 'falls through' from one to the next, unless the ends with a switch case case break

statement. A common programming error is to forget to insert a at the end of a .break case

Recommendation

End each with a statement or, if execution is supposed to fall through to the next , comment thecase break case

last line of the with the following comment: case /* falls through */

Such comments are not required for a completely empty that is supposed to share the same implementationcase

with the subsequent .case

Example

In the following example, the case is missing a statement. As a result, after is assigned the valuePING break reply

of , execution falls through to the case. Then the value of is erroneously assigned theMessage.PONG TIMEOUT reply

value of . To fix this, insert at the end of the case.Message.PING break; PING

1 class Server
2 {

 3 public void respond(Event event)
 4 {
 5 Message reply = null;
 6 switch (event) {
 7 case PING:
 8 reply = Message.PONG;
 9 // Missing 'break' statement
 10 case TIMEOUT:
 11 reply = Message.PING;
 12 case PONG:
 13 // No reply needed
 14 }
 15 if (reply != null)
 16 send(reply);
 17 }

18
 19 private void send(Message message) {
 20 // ...
 21 }

22 }
23
24 enum Event { PING, PONG, TIMEOUT }
25 enum Message { PING, PONG }

References

J. Bloch and N. Gafter, , Puzzle 23. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
Code Conventions for the Java Programming Language: .7.8 switch Statements
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#468
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 51

Encapsulation

Avoid casting from an abstract collection to a concrete implementation type
Avoid declaring array constants
Avoid defining an interface (or abstract class) only to hold constants

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 52

Avoid casting from an abstract collection to a concrete implementation type

Category: > Critical Encapsulation

Description: A cast from an abstract collection to a concrete implementation type makes the code brittle.

Most collections in the Java standard library are defined by an abstract interface (for example or java.util.List

), which is implemented by a range of concrete classes and a range of wrappers. Normally, exceptjava.util.Set

when constructing an object, it is better to use the abstract types because this avoids assumptions about what
the implementation is.

A cast from an abstract to a concrete collection makes the code brittle by ensuring it works only for one possible
implementation class and not others. Usually, such casts are either an indication of over-reliance on concrete
implementation types, or of the fact that the wrong abstract type was used.

Recommendation

It is usually best to use the abstract type consistently in variable, field and parameter declarations.

There may be individual exceptions. For example, it is common to declare variables as rather than LinkedHashSet

 when the iteration order matters and only the implementation provides the right behavior.Set LinkedHashSet

Example

The following example illustrates a situation where the wrong abstract type is used. The interface does notList

provide a method, so the original code casts down to the concrete type , which does. Topoll queue LinkedList

avoid this downcasting, simply use the correct abstract type for this method, namely . This documents theQueue

intent of the programmer and allows for various implementations of queues to be used by clients of this method.

1 Customer getNext(List<Customer> queue) {
 2 if (queue == null)
 3 return null;
 4 LinkedList<Customer> myQueue = (LinkedList<Customer>)queue; // AVOID: Cast to concrete type.
 5 return myQueue.poll();

6 }
7
8 Customer getNext(Queue<Customer> queue) {

 9 if (queue == null)
 10 return null;
 11 return queue.poll(); // GOOD: Use abstract type.

12 }

References

J. Bloch, , Item 52. Addison-Wesley, 2008.Effective Java (second edition)
Java 6 API Specification: .Collection

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 53

Avoid declaring array constants

Category: > Critical Encapsulation

Description: Array constants are mutable and can be changed by malicious code or by accident.

Constant values are typically represented by public, static, final fields. When defining several related constants, it
is sometimes tempting to define a public, static, final field with an array type, and initialize it with a list of all the
different constant values.

However, the keyword applies only to the field itself (that is, the array reference), and not to the contents offinal

the array. This means that the field always refers to the same array instance, but each element of the array may
be modified freely. This possibly invalidates important assumptions of client code.

Recommendation

Where possible, avoid declaring array constants. If there are only a few constant values, consider using a named
constant for each one, or defining them in an type.enum

If you genuinely need to refer to a long list of constants with the same name and an index, consider replacing the
array constant with a constant of type to which you assign an unmodifiable collection. See the example forList

ways of achieving this.

Example

In the following example, applies only to itself, not the constants that it contains.public static final RGB

1 public class Display {
 2 // AVOID: Array constant is vulnerable to mutation.
 3 public static final String[] RGB = {
 4 "FF0000", "00FF00", "0000FF"
 5 };
 6
 7 void f() {
 8 // Re-assigning the "constant" is legal.
 9 RGB[0] = "00FFFF";
 10 }

11 }

The following example shows examples of ways to declare constants that avoid this problem.

1 // Solution 1: Extract to individual constants
2 public class Display {

 3 public static final String RED = "FF0000";
 4 public static final String GREEN = "00FF00";
 5 public static final String BLUE = "0000FF";

6 }
7
8 // Solution 2: Define constants using in an enum type
9 public enum Display
10 {

 11 RED ("FF0000"), GREEN ("00FF00"), BLUE ("0000FF");
12

 13 private String rgb;
 14 private Display(int rgb) {
 15 this.rgb = rgb;
 16 }
 17 public String getRGB(){
 18 return rgb;
 19 }

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 54

20 }
21
22 // Solution 3: Use an unmodifiable collection
23 public class Display {

 24 public static final List<String> RGB =
 25 Collections.unmodifiableList(
 26 Arrays.asList("FF0000",
 27 "00FF00",
 28 "0000FF"));

29 }
30
31 // Solution 4: Use a utility method
32 public class Utils {

 33 public static <T> List<T> constList(T... values) {
 34 return Collections.unmodifiableList(
 35 Arrays.asList(values));
 36 }

37 }
38
39 public class Display {

 40 public static final List<String> RGB =
 41 Utils.constList("FF0000", "00FF00", "0000FF");

42 }

References

J. Bloch, , p. 70. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .4.12.4 final Variables

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.4

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 55

Avoid defining an interface (or abstract class) only to hold constants

Category: > Critical Encapsulation

Description: Defining an interface (or abstract class) only to hold a number of constant definitions is bad
practice.

Definitions of constants (meaning static, final fields) should be placed in an appropriate class where they belong
logically. It is usually bad practice to define an interface (or abstract class) only to hold a number of constant
definitions.

This often arises when a developer tries to put the constant definitions into scope by just implementing the
interface (or extending the abstract class) that defines them.

Recommendation

The preferred way of putting the constant definitions into scope is to use the directive, which allowsimport static

a compilation unit to put any visible static members from other classes into scope.

This issue is discussed in [Bloch]:

That a class uses some constants internally is an implementation detail. Implementing a
constant interface causes this implementation detail to leak into the classes exported API. It is of
no consequence to the users of a class that the class implements a constant interface. In fact, it
may even confuse them. Worse, it represents a commitment: if in a future release the class is
modified so that it no longer needs to use the constants, it still must implement the interface to
ensure binary compatibility.

To prevent this pollution of a class's binary interface, it is best to move the constant definitions to whatever
concrete class uses them most frequently. Users of the definitions could use to access the relevantimport static

fields.

Example

In the following example, the interface has been defined only to hold a constant.MathConstants

1 public class NoConstantsOnly {
 2 static interface MathConstants
 3 {
 4 public static final Double Pi = 3.14;
 5 }

6
 7 static class Circle implements MathConstants
 8 {
 9 public double radius;
 10 public double area()
 11 {
 12 return Math.pow(radius, 2) * Pi;
 13 }
 14 }

15 }

Instead, the constant should be moved to the class or another class that uses the constant frequently.Circle

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 56

References

J. Bloch, , Item 19. Addison-Wesley, 2008.Effective Java (second edition)

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 57

Equality

Avoid comparing arrays using 'Object.equals'
Avoid comparing object identity of boxed types
Avoid comparing object identity of strings
Avoid hashed instances that do not define 'hashCode'
Avoid overriding 'compareTo' but not 'equals'
Avoid overriding only one of 'equals' and 'hashCode'
Avoid possible inconsistency due to 'instanceof' in 'equals'
Avoid reference comparisons with operands of type 'Object'
Avoid unintentionally overloading 'Object.equals'
Do not make calls of the form 'x.equals(y)' with incomparable types
Ensure that an implementaton of 'equals' inspects its argument type

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 58

Avoid comparing arrays using 'Object.equals'

Category: > Critical Equality

Description: Comparing arrays using the 'Object.equals' method checks only reference equality, which is
unlikely to be what is intended.

Code that compares arrays using the method checks only reference equality. This is unlikely to beObject.equals

what is intended.

Recommendation

To compare the lengths of the arrays and the corresponding pairs of elements in the arrays, use one of the
comparison methods from :java.util.Arrays

The method performs a shallow comparison. That is, array elements are compared using Arrays.equals

.equals

The method performs a deep comparison, which is appropriate for comparisons ofArrays.deepEquals

nested arrays.

Example

In the following example, the two arrays are first compared using the method. Because this checksObject.equals

only reference equality and the two arrays are different objects, returns . The two arrays areObject.equals false

then compared using the method. Because this compares the length and contents of the arrays, Arrays.equals

 returns .Arrays.equals true

1 public void arrayExample(){
 2 String[] array1 = new String[]{"a", "b", "c"};
 3 String[] array2 = new String[]{"a", "b", "c"};

4
 5 // Reference equality tested: prints 'false'
 6 System.out.println(array1.equals(array2));
 7
 8 // Equality of array elements tested: prints 'true'
 9 System.out.println(Arrays.equals(array1, array2));

10 }

References

Java API Documentation: , , .Arrays.equals() Arrays.deepEquals() Object.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 59

Avoid comparing object identity of boxed types

Category: > Critical Equality

Description: Comparing two boxed primitive values using the == or != operator compares object identity,
which may not be intended.

Comparing two boxed primitive values using or compares object identity, which may not be intended.== !=

Recommendation

Usually, you should compare non-primitive objects, for example boxed primitive values, by using their equals
methods.

Example

With the following definition, the method call returns because therefEq(new Integer(2), new Integer(2)) false

objects are not identical.

1 boolean refEq(Integer i, Integer j) {
 2 return i == j;

3 }

With the following definition, the method call returns because therealEq(new Integer(2), new Integer(2)) true

objects contain equal values.

1 boolean realEq(Integer i, Integer j) {
 2 return i.equals(j);

3 }

References

J. Bloch and N. Gafter, , Puzzle 32. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
Java API Documentation: , .Object.equals() Integer.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#equals%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 60

Avoid comparing object identity of strings

Category: > Critical Equality

Description: Comparing two strings using the == or != operator compares object identity, which may not
be intended.

Comparing two objects using or compares object identity, which may not be intended. The sameString == !=

sequence of characters can be represented by two distinct objects.String

Recommendation

To see if two objects represent the same sequence of characters, you should usually compare the objectsString

by using their methods.equals

Example

With the following definition, the method call returns refEq("Hello World", new String("Hello World")) false

because the objects are not identical.

1 boolean refEq(String s1, String s2) {
 2 return s1 == s2;

3 }

With the following definition, the method call returns realEq("Hello World", new String("Hello World")) true

because the objects contain equal values.

1 boolean realEq(String s1, String s2) {
 2 return s1.equals(s2);

3 }

References

Java API Documentation: , .String.equals() String.intern()
The Java Language Specification: , , .15.21.3 3.10.5 15.28

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#intern%28%29
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.21.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.28

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 61

Avoid hashed instances that do not define 'hashCode'

Category: > Critical Equality

Description: Classes that define an 'equals' method but no 'hashCode' method, and whose instances are
stored in a hashing data structure, can lead to unexpected results.

Classes that define an method but no method can lead to unexpected results if instances ofequals hashCode

those classes are stored in a hashing data structure. Hashing data structures expect that hash codes fulfill the
contract that two objects that considers equal should have the same hash code. This contract is likely toequals

be violated by such classes.

Recommendation

Every class that implements a custom method should also provide an implementation of .equals hashCode

Example

In the following example, class has no implementation of . Calling on two distinct Point hashCode hashCode Point

objects with the same coordinates would probably result in different hash codes. This would violate the contract
of the method, in which case objects of type should not be stored in hashing data structures.hashCode Point

1 class Point {
 2 int x;
 3 int y;

4
 5 Point(int x, int y) {
 6 this.x = x;
 7 this.y = y;
 8 }

9
 10 public boolean equals(Object o) {
 11 if (!(o instanceof Point)) return false;
 12 Point q = (Point)o;
 13 return x == q.x && y == q.y;
 14 }

15 }

In the modification of the above example, the implementation of for class is suitable because thehashCode Point

hash code is computed from exactly the same fields that are considered in the method. Therefore, theequals

contract of the method is fulfilled.hashCode

1 class Point {
 2 int x;
 3 int y;

4
 5 Point(int x, int y) {
 6 this.x = x;
 7 this.y = y;
 8 }

9
 10 public boolean equals(Object o) {
 11 if (!(o instanceof Point)) return false;
 12 Point q = (Point)o;
 13 return x == q.x && y == q.y;
 14 }

15
 16 // Implement hashCode so that equivalent points (with the same values of x and y) have the
 17 // same hash code

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 62

 18 public int hashCode() {
 19 int hash = 7;
 20 hash = 31*hash + x;
 21 hash = 31*hash + y;
 22 return hash;
 23 }

24 }

References

J. Bloch, , Item 9. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , .Object.equals Object.hashCode
IBM developerWorks: .Java theory and practice: Hashing it out

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
http://www.ibm.com/developerworks/java/library/j-jtp05273/index.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 63

Avoid overriding 'compareTo' but not 'equals'

Category: > Critical Equality

Description: If a class overrides 'compareTo' but not 'equals', it may mean that 'compareTo' and 'equals'
are inconsistent.

A class that overrides but not may not implement a natural ordering that is consistent with compareTo equals

.equals

Recommendation

Although this consistency is not strictly required by the contract, usually both methods should becompareTo

overridden to ensure that they are consistent, that is, that is if and only if is x.compareTo(y)==0 true x.equals(y)

, for any non-null and .true x y

Example

In the following example, the class overrides but not .InconsistentCompareTo compareTo equals

1 public class InconsistentCompareTo implements Comparable<InconsistentCompareTo> {
 2 private int i = 0;
 3 public InconsistentCompareTo(int i) {
 4 this.i = i;
 5 }
 6
 7 public int compareTo(InconsistentCompareTo rhs) {
 8 return i - rhs.i;
 9 }

10 }

In the following example, the class overrides both and .InconsistentCompareToFix compareTo equals

1 public class InconsistentCompareToFix implements Comparable<InconsistentCompareToFix> {
 2 private int i = 0;
 3 public InconsistentCompareToFix(int i) {
 4 this.i = i;
 5 }
 6
 7 public int compareTo(InconsistentCompareToFix rhs) {
 8 return i - rhs.i;
 9 }

10
 11 public boolean equals(InconsistentCompareToFix rhs) {
 12 return i == rhs.i;
 13 }

14 }

If you require a natural ordering that is inconsistent with , you should document it clearly.equals

References

J. Bloch, , Item 12. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , , .Comparable.compareTo Comparable Object.equals

http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html#compareTo%28T%29
http://java.sun.com/javase/6/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 64

Avoid overriding only one of 'equals' and 'hashCode'

Category: > Critical Equality

Description: If a class overrides only one of 'equals' and 'hashCode', it may mean that 'equals' and
'hashCode' are inconsistent.

A class that overrides only one of and is likely to violate the contract of the method. Theequals hashCode hashCode

contract requires that gives the same integer result for any two equal objects. Not enforcing this propertyhashCode

may cause unexpected results when storing and retrieving objects of such a class in a hashing data structure.

Recommendation

Usually, both methods should be overridden to ensure that they are consistent.

Example

In the following example, the class overrides but not .InconsistentEqualsHashCode hashCode equals

1 public class InconsistentEqualsHashCode {
 2 private int i = 0;
 3 public InconsistentEqualsHashCode(int i) {
 4 this.i = i;
 5 }

6
 7 public int hashCode() {
 8 return i;
 9 }

10 }

In the following example, the class overrides both and .InconsistentEqualsHashCodeFix hashCode equals

1 public class InconsistentEqualsHashCodeFix {
 2 private int i = 0;
 3 public InconsistentEqualsHashCodeFix(int i) {
 4 this.i = i;
 5 }

6
 7 @Override
 8 public int hashCode() {
 9 return i;
 10 }

11
 12 @Override
 13 public boolean equals(Object obj) {
 14 if (obj == null)
 15 return false;
 16 if (getClass() != obj.getClass())
 17 return false;
 18 InconsistentEqualsHashCodeFix that = (InconsistentEqualsHashCodeFix) obj;
 19 return this.i == that.i;
 20 }

21 }

References

J. Bloch, , Item 9. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: , .Object.equals Object.hashCode
IBM developerWorks: .Java theory and practice: Hashing it out
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
http://www.ibm.com/developerworks/java/library/j-jtp05273/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 65

Avoid possible inconsistency due to 'instanceof' in 'equals'

Category: > Critical Equality

Description: Implementations of 'equals' that use 'instanceof' to test the type of the argument and are
further overridden in a subclass are likely to violate the 'equals' contract.

Implementations of that use to check the type of their argument are likely to lead toequals instanceof

non-symmetric definitions of , if they are further overridden in subclasses that add fields and redefine equals

. A definition of the method should be reflexive, symmetric, and transitive, and a violation of the equals equals

 contract may lead to unexpected behavior.equals

Recommendation

Consider using one of the following options:

Check the type of the argument using instead of .getClass instanceof

Declare the class or the method . This prevents the creation of subclasses that wouldequals final

otherwise violate the contract.equals

Replace inheritance by composition. Instead of a class extending a class , class can declare a field ofB A B

type in addition to any other fields.A

The first option has the disadvantage of violating the substitution principle of object-oriented languages, which
says that an instance of a subclass of can be provided whenever an instance of class is required.A A

Example

The first option is illustrated in the following example:

1 class BadPoint {
 2 int x;
 3 int y;

4
 5 BadPoint(int x, int y) {
 6 this.x = x;
 7 this.y = y;
 8 }

9
 10 public boolean equals(Object o) {
 11 if(!(o instanceof BadPoint))
 12 return false;
 13 BadPoint q = (BadPoint)o;
 14 return x == q.x && y == q.y;
 15 }

16 }
17
18 class BadPointExt extends BadPoint {

 19 String s;
20

 21 BadPointExt(int x, int y, String s) {
 22 super(x, y);
 23 this.s = s;
 24 }

25
 26 // violates symmetry of equals contract
 27 public boolean equals(Object o) {
 28 if(!(o instanceof BadPointExt)) return false;
 29 BadPointExt q = (BadPointExt)o;
 30 return super.equals(o) && (q.s==null ? s==null : q.s.equals(s));

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 66

 31 }
32 }
33
34 class GoodPoint {

 35 int x;
 36 int y;

37
 38 GoodPoint(int x, int y) {
 39 this.x = x;
 40 this.y = y;
 41 }

42
 43 public boolean equals(Object o) {
 44 if (o != null && getClass() == o.getClass()) {
 45 GoodPoint q = (GoodPoint)o;
 46 return x == q.x && y == q.y;
 47 }
 48 return false;
 49 }

50 }
51
52 class GoodPointExt extends GoodPoint {

 53 String s;
54

 55 GoodPointExt(int x, int y, String s) {
 56 super(x, y);
 57 this.s = s;
 58 }

59
 60 public boolean equals(Object o) {
 61 if (o != null && getClass() == o.getClass()) {
 62 GoodPointExt q = (GoodPointExt)o;
 63 return super.equals(o) && (q.s==null ? s==null : q.s.equals(s));
 64 }
 65 return false;
 66 }

67 }
68
69 BadPoint p = new BadPoint(1, 2);
70 BadPointExt q = new BadPointExt(1, 2, "info");

Given the definitions in the example, returns whereas returns , which violatesp.equals(q) true q.equals(p) false

the symmetry requirement of the contract.equals

Attempting to enforce symmetry by modifying the method to ignore the field when itsBadPointExt.equals s

parameter is an instance of type results in violating the transitivity requirement of the contract.BadPoint equals

The classes and avoid violating the contract by using rather than GoodPoint GoodPointExt equals getClass

.instanceof

References

J. Bloch, , Items 8 and 16. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: .Object.equals()
The Java Language Specification: .Type Comparison Operator instanceof
Artima Developer: .How to Write an Equality Method in Java

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.20.2
http://www.artima.com/lejava/articles/equality.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 67

Avoid reference comparisons with operands of type 'Object'

Category: > Critical Equality

Description: Reference comparisons (== or !=) with operands where the static type is 'Object' may not
work as intended.

Reference comparisons (or) with operands where the static type is may not work as intended.== != Object

Reference comparisons check if two objects are . To check if two objects are , use identical equivalent
 instead.Object.equals

Recommendation

Use instead of or , and override the default behavior of the method in a subclass, so that itObject.equals == !=

uses the appropriate notion of equality.

References

Java API Documentation: .Object.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 68

Avoid unintentionally overloading 'Object.equals'

Category: > Critical Equality

Description: Defining 'Object.equals', where the parameter of 'equals' is not of the appropriate type,
overloads 'equals' instead of overriding it.

Classes that define an method whose parameter type is not the methodequals Object overload Object.equals

instead of it. This may not be intended.overriding

Recommendation

To the method, the parameter of the method must have type .override Object.equals equals Object

Example

In the following example, the definition of class does not override the method. ThisBadPoint Object.equals

means that resolves to the default definition of and returns . Class p.equals(q) Object.equals false GoodPoint

correctly overrides , so that returns .Object.equals r.equals(s) true

1 class BadPoint {
 2 int x;
 3 int y;

4
 5 BadPoint(int x, int y) {
 6 this.x = x;
 7 this.y = y;
 8 }

9
 10 // overloaded equals method -- should be avoided
 11 public boolean equals(BadPoint q) {
 12 return x == q.x && y == q.y;
 13 }

14 }
15
16 BadPoint p = new BadPoint(1, 2);
17 Object q = new BadPoint(1, 2);
18 boolean badEquals = p.equals(q); // evaluates to false
19
20 class GoodPoint {

 21 int x;
 22 int y;

23
 24 GoodPoint(int x, int y) {
 25 this.x = x;
 26 this.y = y;
 27 }

28
 29 // correctly overrides Object.equals(Object)
 30 public boolean equals(Object obj) {
 31 if (obj != null && getClass() == obj.getClass()) {
 32 GoodPoint q = (GoodPoint)obj;
 33 return x == q.x && y == q.y;
 34 }
 35 return false;
 36 }

37 }

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 69

38
39 GoodPoint r = new GoodPoint(1, 2);
40 Object s = new GoodPoint(1, 2);
41 boolean goodEquals = r.equals(s); // evaluates to true

References

J. Bloch, , Item 8. Addison-Wesley, 2008.Effective Java (second edition)
The Java Language Specification: , .Overriding (by Instance Methods) Overloading
The Java Tutorials: .Overriding and Hiding Methods

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9
http://docs.oracle.com/javase/tutorial/java/IandI/override.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 70

Do not make calls of the form 'x.equals(y)' with incomparable types

Category: > Critical Equality

Description: Calls of the form 'x.equals(y)', where the types of 'x' and 'y' are incomparable, should always
return 'false'.

Calls of the form , where and have incomparable types, should always return because thex.equals(y) x y false

runtime types of and will be different. Two types are incomparable if they are distinct and do not have ax y

common subtype.

Recommendation

Ensure that such comparisons use comparable types.

Example

In the following example, the call to on line 5 refers to the whole array by mistake, instead of a specificequals

element. Therefore, "Value not found" is returned.

1 String[] anArray = new String[]{"a","b","c"}
2 String valueToFind = "b";
3
4 for(int i=0; i<anArray.length; i++){

 5 if(anArray.equals(valueToFind){ // anArray[i].equals(valueToFind) was intended
 6 return "Found value at index " + i;
 7 }

8 }
9
10 return "Value not found";

References

Java API Documentation: .Object.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 71

Ensure that an implementaton of 'equals' inspects its argument type

Category: > Critical Equality

Description: An implementation of 'equals' that does not check the type of its argument may lead to failing
casts.

An implementation of must be able to handle an argument of any type, to avoid failing casts. Therefore,equals

the implementation should inspect the type of its argument to see if the argument can be safely cast to the class
in which the method is declared.equals

Recommendation

Usually, an implementation of should check the type of its argument using , following theequals instanceof

general pattern below.

1 class A {
 2 // ...
 3 public final boolean equals(Object obj) {
 4 if (!(obj instanceof A)) {
 5 return false;
 6 }
 7 A a = (A)obj;
 8 // ...further checks...
 9 }
 10 // ...

11 }

Using in this way has the added benefit that it includes a guard against null pointer exceptions: if instanceof obj

is , the check fails and is returned. Therefore, after the check, it is guaranteed that is not , andnull false obj null

its fields can be safely accessed.

Whenever you use to check the type of the argument, you should declare the method , soinstanceof equals final

that subclasses are unable to cause a violation of the symmetry requirement of the contract by furtherequals

overriding .equals

If you want subclasses to redefine the notion of equality by overriding , use instead of equals getClass instanceof

to check the type of the argument. However, note that the use of prevents any equality relationshipgetClass

between instances of a class and its subclasses, even when no additional state is added in a subclass.

References

J. Bloch, , Item 8. Addison-Wesley, 2008.Effective Java (second edition)
Java API Documentation: .Object.equals()
The Java Language Specification: .Type Comparison Operator instanceof

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.20.2

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 72

Exceptions

Avoid catching 'Throwable' or 'Exception'
Do not dereference a variable that is 'null'
Ensure that 'finally' blocks complete normally

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 73

Avoid catching 'Throwable' or 'Exception'

Category: > Critical Exceptions

Description: Catching 'Throwable' or 'Exception' is dangerous because these can include 'Error' or
'RuntimeException'.

Catching or is dangerous because these can include an such as or aThrowable Exception Error OutOfMemoryError

 such as . These should normally be propagated to theRuntimeException ArrayIndexOutOfBoundsException

outermost level because they generally indicate a program state from which normal operation cannot be
recovered.

Recommendation

It is usually best to ensure that exceptions that are caught in a clause are as specific as possible to avoidcatch

inadvertently suppressing more serious problems.

Example

In the following example, the clause in the first block catches . However, when performingcatch try Throwable

read operations on a within a block, the corresponding clause should normally catch FileInputStream try catch

 instead. This is shown in the second, modified block.IOException try

1 FileInputStream fis = ...
2 try {

 3 fis.read();
4 } catch (Throwable e) { // BAD: The exception is too general.

 5 // Handle this exception
6 }
7
8 FileInputStream fis = ...
9 try {

 10 fis.read();
11 } catch (IOException e) { // GOOD: The exception is specific.

 12 // Handle this exception
13 }

References

J. Bloch and N. Gafter, , Puzzle 44. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
Java Platform, Standard Edition 6, API Specification: , , , .Throwable Error Exception RuntimeException

http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Error.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 74

Do not dereference a variable that is 'null'

Category: > Critical Exceptions

Description: Dereferencing a variable whose value is 'null' causes a 'NullPointerException'.

If a variable is dereferenced, and the variable has a value on all possible execution paths leading to thenull

dereferencing, the dereferencing is guaranteed to result in a .NullPointerException

Recommendation

Ensure that the variable does not have a value when it is dereferenced.null

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 75

Ensure that 'finally' blocks complete normally

Category: > Critical Exceptions

Description: A 'finally' block that runs because an exception has been thrown, and that does not complete
normally, causes the exception to disappear silently.

A block that does not complete normally suppresses any exceptions that may have been thrown in thefinally

corresponding block. This can happen if the block contains any or statements, or if ittry finally return throw

contains any or statements whose jump target lies outside of the block.break continue finally

Recommendation

To avoid suppressing exceptions that are thrown in a block, design the code so that the corresponding try

 block always completes normally. Remove any of the following statements that may cause it to terminatefinally

abnormally:

return

throw

break

continue

References

J. Bloch and N. Gafter, , Puzzle 36. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
The Java Language Specification: .Execution of try-finally and try-catch-finally
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.20.2
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 76

Expressions

Avoid accidentally assigning to a local variable in a 'return' statement
Avoid accidentally using a bitwise logical operator instead of a conditional operator

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 77

Avoid accidentally assigning to a local variable in a 'return' statement

Category: > Critical Expressions

Description: Assigning to a local variable in a 'return' statement has no effect.

An assignment is an expression. The value of an assignment expression is the value assigned to the variable.
This can be useful, for example, when initializing two or more variables at once (for example,).a = b = 0;

However, assigning to a local variable in the expression of a return statement is redundant because that value
can never be read.

Recommendation

Remove the redundant assignment from the statement, leaving just the right-hand side of the assignment.return

Example

In the following example, consider the second assignment to . The variable goes out of scope when theret

method returns, and the value assigned to it is never read. Therefore, the assignment is redundant. Instead, the
last line of the method can be changed to return Math.max(ret, c);

1 public class Utilities
2 {

 3 public static int max(int a, int b, int c) {
 4 int ret = Math.max(a, b)
 5 return ret = Math.max(ret, c); // Redundant assignment
 6 }

7 }

References

Java Language Specification: , .14.17 The return Statement 15.26 Assignment Operators

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.17
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 78

Avoid accidentally using a bitwise logical operator instead of a conditional operator

Category: > Critical Expressions

Description: Using a bitwise logical operator on a Boolean where a conditional-and or conditional-or
operator is intended is likely to give the wrong result and may cause an exception.

Using a bitwise logical operator (or) on a Boolean where a conditional-and or conditional-or operator (or)& | && ||

is intended is likely to give the wrong result and may cause an exception. This is especially true if the left-hand
operand is a guard for the right-hand operand.

Typically, as in the example below, this kind of defect is introduced by simply mistyping the intended logical
operator rather than any conceptual mistake by the programmer.

Recommendation

If the right-hand side of an expression is only intended to be evaluated if the left-hand side evaluates to , usetrue

a conditional-and.

Similarly, if the right-hand side of an expression is only intended to be evaluated if the left-hand side evaluates to
, use a conditional-or.false

Example

In the following example, the method is implemented correctly. For a forename to be valid it must behasForename

a non-null string with a non-zero length. The method has two expressions (and forename != null

) to check these two properties. The second check is executed only if the first succeeds,forename.length() > 0

because they are combined using a conditional-and operator ().&&

In contrast, although looks almost the same, it contains a defect. Again there are two tests (hasSurname surname

 and), but they are linked by a bitwise logical operator (). Both sides of a bitwise!= null surname.length() > 0 &

logical operator are evaluated, so if is the method throws a always surname null hasSurname NullPointerException

. To fix the defect, change to .& &&

1 public class Person
2 {

 3 private String forename;
 4 private String surname;

5
 6 public boolean hasForename() {
 7 return forename != null && forename.length() > 0; // GOOD: Conditional-and operator
 8 }

9
 10 public boolean hasSurname() {
 11 return surname != null & surname.length() > 0; // BAD: Bitwise AND operator
 12 }

13
 14 // ...

15 }

References

J. Bloch and N. Gafter, , Puzzle 42. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
Java Language Specification: , 15.22.2 Boolean Logical Operators &, ^, and | 15.23 Conditional-And

, .Operator && 15.24 Conditional-Or Operator ||

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.23
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.23
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.24

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 79

Extensibility

Avoid calling 'getClass().getResource()'
Avoid forcible termination of the JVM

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 80

Avoid calling 'getClass().getResource()'

Category: > Critical Extensibility

Description: Calling 'this.getClass().getResource()' may yield unexpected results if called from a subclass
in another package.

Using the method is a common way of including some non-code resources with an application.Class.getResource

There are problems when this is called using , for some variable . This is not a safex.getClass().getResource() x

way to retrieve a resource. The method returns the class of (that is, its actual, "most derived"getClass run-time x

class, rather than its declared type), which causes two potential problems:

If the run-time type of the receiving object is a subclass of the declared type and is in a different package,
the resource path may be interpreted differently. According to its contract, qualifiesClass.getResource

non-absolute paths with the current package name, thus potentially returning a different resource or failing
to find the requested resource.
Class.getResource delegates finding the resource to the class loader that loaded the class. At run time,
there is no guarantee that all subclasses of a particular type are loaded by the same class loader, resulting
in resource lookup failures that are difficult to diagnose.

Recommendation

Rather than using the method, which relies on dynamic dispatch and run-time types, use literalsgetClass class

instead. For example, instead of calling on an object of type , call getClass().getResource() Foo

. Class literals always refer to the declared type they are used on, removing theFoo.class.getResource()

dependency on run-time types.

Example

In the following example, the calls to return different results, depending on which class the call isgetPostalCodes

made on: the class is in the package and the class is in the package .Address framework UKAddress client

1 package framework;
2 class Address {

 3 public URL getPostalCodes() {
 4 // AVOID: The call is made on the run-time type of 'this'.
 5 return this.getClass().getResource("postal-codes.csv");
 6 }

7 }
8
9 package client;
10 class UKAddress extends Address {

 11 public void convert() {
 12 // Looks up "framework/postal-codes.csv"
 13 new Address().getPostalCodes();
 14 // Looks up "client/postal-codes.csv"
 15 new UKAddress().getPostalCodes();
 16 }

17 }

In the following corrected example, the implementation of is changed so that it always calls getPostalCodes

 on the same class.getResource

1 package framework;
2 class Address {

 3 public URL getPostalCodes() {
 4 // GOOD: The call is always made on an object of the same type.

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 81

 5 return Address.class.getResource("postal-codes.csv");
 6 }

7 }
8
9 package client;
10 class UKAddress extends Address {

 11 public void convert() {
 12 // Looks up "framework/postal-codes.csv"
 13 new Address().getPostalCodes();
 14 // Looks up "framework/postal-codes.csv"
 15 new UKAddress().getPostalCodes();
 16 }

17 }

References

Java Platform, Standard Edition 7, API Specification: .class.getResource()

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getResource(java.lang.String)

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 82

Avoid forcible termination of the JVM

Category: > Critical Extensibility

Description: Calling 'System.exit', 'Runtime.halt', or 'Runtime.exit' may make code harder to reuse and
prevent important cleanup steps from running.

Calling one of the methods , , and immediately terminates the Java VirtualSystem.exit Runtime.halt Runtime.exit

Machine (JVM), effectively killing all threads without giving any of them a chance to perform cleanup actions or
recover. As such, it is a dangerous thing to do: firstly, it can terminate the entire program inadvertently, and
secondly, it can prevent important resources from being released or program state from being written to disk
consistently.

It is sometimes considered acceptable to call from a program's method in order to indicate theSystem.exit main

overall exit status of the program. Such calls are an exception to this rule.

Recommendation

It is usually preferable to use a different mechanism for reporting failure conditions. Consider returning a special
value (perhaps) that users of the current method check for and recover from appropriately. Alternatively,null

throw a suitable exception, which unwinds the stack and allows properly written code to clean up after itself, while
leaving other threads undisturbed.

Example

In the following example, problem 1 shows that tries to write some data to disk and terminatesFileOutput.write

the JVM if this fails. This leaves the partially-written file on disk without any cleanup code running. It would be
better to either return to indicate the failure, or let the propagate upwards and be handled by afalse IOException

method that knows how to recover.

Problem 2 is more subtle. In this example, there is just one entry point to the program (the method), whichmain

constructs an and performs it. calls to indicate successful completion. Consider,Action Action.run System.exit

however, how this code might be integrated in an application server that constructs instances and calls Action run

on them without going through . The fact that terminates the JVM instead of returning its exit code as anmain run

integer makes that use-case impossible.

1 // Problem 1: Miss out cleanup code
2 class FileOutput {

 3 boolean write(String[] s) {
 4 try {
 5 output.write(s.getBytes());
 6 } catch (IOException e) {
 7 System.exit(1);
 8 }
 9 return true;
 10 }

11 }
12
13 // Problem 2: Make code reuse difficult
14 class Action {

 15 public void run() {
 16 // ...
 17 // Perform tasks ...
 18 // ...
 19 System.exit(0);
 20 }
 21 public static void main(String[] args) {

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 83

 22 new Action(args).run();
 23 }

24 }

References

J. Bloch, , p. 232. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 7, API Specification: , , .System.exit(int) Runtime.halt(int) Runtime.exit(int)

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#exit(int)
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#halt(int)
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#exit(int)

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 84

Incomplete Code

Avoid empty blocks or statements
Avoid empty statements
Ensure that a 'switch' includes cases for all 'enum' constants

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 85

Avoid empty blocks or statements

Category: > Critical Incomplete Code

Description: An undocumented empty block or statement hinders readability. It may also indicate
incomplete code.

An unexplained empty block or statement makes the code less readable. It might also indicate missing code, a
misplaced semicolon, or a misplaced brace. For these reasons, it should be avoided.

Recommendation

If a block is empty because some code is missing, add the code.

If an statement has an empty branch and a non-empty branch, it may be possible to negate theif then else

condition and move the statements of the branch into the branch.else then

If a block is deliberately empty, add a comment to explain why.

Example

In the following example, the loop has intentionally been left empty. The purpose of the loop is to scan a while

 for the first occurrence of the character . A programmer reading the code might not understand theString '='

reason for the empty loop body, and think that something is missing, or perhaps even that the loop is useless.
Therefore it is a good practice to add a comment to an empty block explaining why it is empty.

1 public class Parser
2 {

 3 public void parse(String input) {
 4 int pos = 0;
 5 // ...
 6 // AVOID: Empty block
 7 while (input.charAt(pos++) != '=') { }
 8 // ...
 9 }

10 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , , , 14.2 Blocks 14.6 The Empty Statement 14.9 The if Statement 14.12 The

, , .while Statement 14.13 The do Statement 14.14 The for Statement

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.9
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.12
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.12
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.13
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.14

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 86

Avoid empty statements

Category: > Critical Incomplete Code

Description: An empty statement hinders readability.

An is a single semicolon that does not terminate another statement. Such a statement hindersempty statement ;

readability and has no effect on its own.

Recommendation

Avoid empty statements. If a loop is intended to have an empty body, it is better to mark that fact explicitly by
using a pair of braces containing an explanatory comment for the body, rather than a single semicolon.{}

Example

In the following example, there is an empty statement on line 3, where an additional semicolon is used. On line 6,
the statement has an empty body because the condition is immediately followed by a semicolon. In this case,for

it is better to include a pair of braces containing an explanatory comment for the body instead.{}

$body

1 public class Cart {
 2 // AVOID: Empty statement
 3 List<Item> items = new ArrayList<Cart>();;
 4 public void applyDiscount(float discount) {
 5 // AVOID: Empty statement as loop body
 6 for (int i = 0; i < items.size(); items.get(i++).applyDiscount(discount));
 7 }

8 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 87

Ensure that a 'switch' includes cases for all 'enum' constants

Category: > Critical Incomplete Code

Description: A 'switch' statement that is based on an 'enum' type and does not have cases for all the
'enum' constants is usually a coding mistake.

A statement that is based on a variable with an type should either have a default case or handle allswitch enum

possible constants of that type. Handling all but one or two constants is usually a coding mistake.enum enum

Recommendation

If there are only a handful of missing cases, add them to the end of the statement. If there are many casesswitch

that do not need to be handled individually, add a default case to handle them.

If there are some constants that should never occur in this particular part of the code, then programenum

defensively by adding cases for those constants and explicitly throwing an exception (rather than just having no
cases for those constants).

Example

In the following example, the case for 'YES' is missing. Therefore, if is 'YES', an exception is thrown at runanswer

time. To fix this, a case for 'YES' should be added.

1 enum Answer { YES, NO, MAYBE }
2
3 class Optimist
4 {

 5 Answer interpet(Answer answer) {
 6 switch (answer) {
 7 case MAYBE:
 8 return Answer.YES;
 9 case NO:
 10 return Answer.MAYBE;
 11 // Missing case for 'YES'
 12 }
 13 throw new RuntimeException("uncaught case: " + answer);
 14 }

15 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , .8.9 Enums 14.11 The switch Statement

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.11

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 88

Java objects

Cloning
Garbage collection
Serialization

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 89

Cloning

Ensure that a subclass 'clone' method calls 'super.clone'

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 90

Ensure that a subclass 'clone' method calls 'super.clone'

Category: > > Critical Java objects Cloning

Description: A 'clone' method that is overridden in a subclass, and that does not itself call 'super.clone',
causes calls to the subclass's 'clone' method to return an object of the wrong type.

A method that is overridden in a subclass should call . Not doing so causes the subclass clone super.clone clone

to return an object of the wrong type, which violates the contract for .Cloneable

The Java API documentation states that, for an object , the general intent of the method is for it to satisfyx clone

the following three properties:

x.clone() != x (the cloned object is a different object instance)
x.clone().getClass() == x.getClass() (the cloned object is the same type as the source object)
x.clone().equals(x) (the cloned object has the same 'contents' as the source object)

For the cloned object to be of the same type as the source object, non-final classes must call andsuper.clone

that call must eventually reach , which creates an instance of the right type. If it were to create a newObject.clone

object using a constructor, a subclass that does not implement the method returns an object of the wrongclone

type. In addition, all of the class's supertypes that also override must call . Otherwise, it neverclone super.clone

reaches and creates an object of the incorrect type.Object.clone

However, as only does a shallow copy of the fields of an object, any objects that have aObject.clone Cloneable

"deep structure" (for example, objects that use an array or) must take the clone that results from theCollection

call to and assign explicitly created copies of the structure to the clone's fields. This means that thesuper.clone

cloned instance does not share its internal state with the source object. If it share its internal state, anydid
changes made in the cloned object would also affect the internal state of the source object, probably causing
unintended behavior.

One added complication is that cannot modify values in final fields, which would be already set by the callclone

to . Some fields must be made non-final to correctly implement the method.super.clone clone

Recommendation

Every clone method should always use to construct the cloned object. This ensures that the clonedsuper.clone

object is ultimately constructed by , which uses reflection to ensure that an object of the correctObject.clone

runtime type is created.

Example

In the following example, the attempt to clone fails because is implemented incorrectlyWrongEmployee super.clone

in its superclass .WrongPerson

1 class WrongPerson implements Cloneable {
 2 private String name;
 3 public WrongPerson(String name) { this.name = name; }
 4 // BAD: 'clone' does not call 'super.clone'.
 5 public WrongPerson clone() {
 6 return new WrongPerson(this.name);
 7 }

8 }
9
10 class WrongEmployee extends WrongPerson {

 11 public WrongEmployee(String name) {
 12 super(name);
 13 }
 14 // ALMOST RIGHT: 'clone' correctly calls 'super.clone',

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 91

 15 // but 'super.clone' is implemented incorrectly.
 16 public WrongEmployee clone() {
 17 return (WrongEmployee)super.clone();
 18 }

19 }
20
21 public class MissingCallToSuperClone {

 22 public static void main(String[] args) {
 23 WrongEmployee e = new WrongEmployee("John Doe");
 24 WrongEmployee eclone = e.clone(); // Causes a ClassCastException
 25 }

26 }

However, in the following modified example, the attempt to clone succeeds because isEmployee super.clone

implemented correctly in its superclass .Person

1 class Person implements Cloneable {
 2 private String name;
 3 public Person(String name) { this.name = name; }
 4 // GOOD: 'clone' correctly calls 'super.clone'
 5 public Person clone() {
 6 try {
 7 return (Person)super.clone();
 8 } catch (CloneNotSupportedException e) {
 9 throw new AssertionError("Should never happen");
 10 }
 11 }

12 }
13
14 class Employee extends Person {

 15 public Employee(String name) {
 16 super(name);
 17 }
 18 // GOOD: 'clone' correctly calls 'super.clone'
 19 public Employee clone() {
 20 return (Employee)super.clone();
 21 }

22 }
23
24 public class MissingCallToSuperClone {

 25 public static void main(String[] args) {
 26 Employee e2 = new Employee("Jane Doe");
 27 Employee e2clone = e2.clone(); // 'clone' correctly returns an object of type 'Employee'
 28 }

29 }

References

J. Bloch, , Item 11. Addison-Wesley, 2008.Effective Java (second edition)
Java 6 API Specification: .Object.clone()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 92

Garbage collection

Do not call 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit'

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 93

Do not call 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit'

Category: > > Critical Java objects Garbage collection

Description: Calling 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit' may cause finalizers to
be run on live objects, leading to erratic behavior or deadlock.

Avoid calling or , which are considered to be dangerousSystem.runFinalizersOnExit Runtime.runFinalizersOnExit

methods.

The Java Development Kit documentation for states:System.runFinalizersOnExit

This method is inherently unsafe. It may result in finalizers being called on live objects while
other threads are concurrently manipulating those objects, resulting in erratic behavior or
deadlock.

Object finalizers are normally only called when the object is about to be collected by the garbage collector. Using
 sets a Java Virtual Machine-wide flag that executes finalizers runFinalizersOnExit on all objects with a finalize

 before the runtime exits. This would require all objects with finalizers to defend against the possibility of method
 being called when the object is still in use, which is not practical for most applications.finalize

Recommendation

Ensure that the code does not rely on the execution of finalizers. If the code is dependent on the garbage
collection behavior of the Java Virtual Machine, there is no guarantee that finalizers will be executed in a timely
manner, or at all. This may become a problem if finalizers are used to dispose of limited system resources, such
as file handles.

Instead of finalizers, use explicit methods in blocks, to make sure that an object's resources aredispose finally

released.

Example

The following example shows a program that calls , which is not recommended.runFinalizersOnExit

1 void main() {
 2 // ...
 3 // BAD: Call to 'runFinalizersOnExit' forces execution of all finalizers on termination of
 4 // the runtime, which can cause live objects to transition to an invalid state.
 5 // Avoid using this method (and finalizers in general).
 6 System.runFinalizersOnExit(true);
 7 // ...

8 }

The following example shows the recommended approach: a program that calls a method in a dispose finally

block.

1 // Instead of using finalizers, define explicit termination methods
2 // and call them in 'finally' blocks.
3 class LocalCache {

 4 private Collection<File> cacheFiles = ...;
 5
 6 // Explicit method to close all cacheFiles
 7 public void dispose() {
 8 for (File cacheFile : cacheFiles) {
 9 disposeCacheFile(cacheFile);
 10 }

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 94

 11 }
12 }
13
14 void main() {

 15 LocalCache cache = new LocalCache();
 16 try {
 17 // Use the cache
 18 } finally {
 19 // Call the termination method in a 'finally' block, to ensure that
 20 // the cache's resources are freed.
 21 cache.dispose();
 22 }

23 }

References

J. Bloch, , Item 7. Addison-Wesley, 2008.Effective Java (second edition)
Java 6 API Documentation: , .System.runFinalizersOnExit() Object.finalize()
Java SE Documentation: .Java Thread Primitive Deprecation

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#runFinalizersOnExit%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#finalize%28%29
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 95

Serialization

Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type
Ensure that a class that implements 'Comparator' and is used to construct a sorted collection is serializable
Ensure that a non-serializable, immediate superclass of a serializable class declares a default constructor
Ensure that a non-static, serializable nested class is enclosed in a serializable class

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 96

Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type

Category: > > Critical Java objects Serialization

Description: A 'serialVersionUID' field that is declared in a serializable class but is of the wrong type
cannot be used by the serialization framework.

A serializable class that uses the field to act as an object version number must declare the fieldserialVersionUID

to be , , and of type for it to be used by the Java serialization framework.final static long

Recommendation

Make sure that the field in a serialized class is final, static, and of type .serialVersionUID long

Example

In the following example, defines using the wrong type, so that it is not used by theWrongNote serialVersionUID

Java serialization framework. However, defines it correctly so that it is used by the framework.Note

1 class WrongNote implements Serializable {
 2 // BAD: serialVersionUID must be static, final, and 'long'
 3 private static final int serialVersionUID = 1;
 4
 5 //...

6 }
7
8 class Note implements Serializable {

 9 // GOOD: serialVersionUID is of the correct type
 10 private static final long serialVersionUID = 1L;

11 }

References

Java API Documentation: .Serializable
JavaWorld: .Ensure proper version control for serialized objects

http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://www.javaworld.com/javaworld/jw-02-2006/jw-0227-control.html?page=1

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 97

Ensure that a class that implements 'Comparator' and is used to construct a sorted collection is
serializable

Category: > > Critical Java objects Serialization

Description: A comparator that is passed to an ordered collection (for example, a treemap) must be
serializable, otherwise the collection fails to serialize at run-time.

A class that implements and is used to construct a sorted collection needs to bejava.util.Comparator

serializable. An ordered collection (such as a) that is constructed using a comparatorjava.util.TreeMap

serializes successfully only if the comparator is serializable.

The s in the Java Standard Library that require a comparator (, ,) all call Collection TreeSet TreeMap PriorityQueue

, which tries to serialize every non-static, non-transient field in the class.ObjectOutputStream.defaultWriteObject

As the comparator is stored in a field in these collections, the attempt to serialize a non-serializable comparator
throws a .java.io.NotSerializableException

Recommendation

Comparators should be serializable if they are used in sorted collections that may be serialized. In most cases,
simply changing the comparator so it also implements is enough. Comparators that have internalSerializable

state may require additional changes (for example, custom and methods). In these cases,writeObject readObject

it is best to follow general best practices for serializable objects (see references below).

Example

In the following example, is not serializable because it does not implement .WrongComparator Serializable

However, is serializable because it does implement .StringComparator Serializable

$body

1 // BAD: This is not serializable, and throws a 'java.io.NotSerializableException'
2 // when used in a serializable sorted collection.
3 class WrongComparator implements Comparator<String> {

 4 public int compare(String o1, String o2) {
 5 return o1.compareTo(o2);
 6 }

7 }
8
9 // GOOD: This is serializable, and can be used in collections that are meant to be serialized.
10 class StringComparator implements Comparator<String>, Serializable {

 11 private static final long serialVersionUID = -5972458403679726498L;
12

 13 public int compare(String arg0, String arg1) {
 14 return arg0.compareTo(arg1);
 15 }

16 }

References

Java API Documentation: , , .Comparator ObjectOutputStream Serializable

http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 98

Ensure that a non-serializable, immediate superclass of a serializable class declares a default
constructor

Category: > > Critical Java objects Serialization

Description: A non-serializable, immediate superclass of a serializable class that does not itself declare
an accessible, no-argument constructor causes deserialization to fail.

A serializable class that is a subclass of a non-serializable class cannot be deserialized if its superclass does not
declare a no-argument constructor. The Java serialization framework uses the no-argument constructor when it
initializes the object instance that is created during deserialization. Deserialization fails with an

 if its superclass does not declare a no-argument constructor.InvalidClassException

The Java Development Kit API documentation states:

To allow subtypes of non-serializable classes to be serialized, the subtype may assume
responsibility for saving and restoring the state of the supertype's public, protected, and (if
accessible) package fields. The subtype may assume this responsibility only if the class it
extends has an accessible no-arg constructor to initialize the class's state. It is an error to
declare a class if this is not the case. The error will be detected at runtime.Serializable

Recommendation

Make sure that every non-serializable class that is extended by a serializable class has a no-argument
constructor.

Example

In the following example, the class cannot be deserialized because its superclass doesWrongSubItem WrongItem

not declare a no-argument constructor. However, the class be serialized because it declares aSubItem can
no-argument constructor.

1 class WrongItem {
 2 private String name;

3
 4 // BAD: This class does not have a no-argument constructor, and throws an
 5 // 'InvalidClassException' at runtime.

6
 7 public WrongItem(String name) {
 8 this.name = name;
 9 }

10 }
11
12 class WrongSubItem extends WrongItem implements Serializable {

 13 public WrongSubItem() {
 14 super(null);
 15 }

16
 17 public WrongSubItem(String name) {
 18 super(name);
 19 }

20 }
21
22 class Item {

 23 private String name;
24

 25 // GOOD: This class declares a no-argument constructor, which allows serializable

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 99

 26 // subclasses to be deserialized without error.
 27 public Item() {}

28
 29 public Item(String name) {
 30 this.name = name;
 31 }

32 }
33
34 class SubItem extends Item implements Serializable {

 35 public SubItem() {
 36 super(null);
 37 }

38
 39 public SubItem(String name) {
 40 super(name);
 41 }

42 }

References

Java API Documentation: .Serializable
J. Bloch, , Item 74. Addison-Wesley, 2008.Effective Java (second edition)

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 100

Ensure that a non-static, serializable nested class is enclosed in a serializable class

Category: > > Critical Java objects Serialization

Description: A class that is serializable with an enclosing class that is not serializable causes serialization
to fail.

Non-static nested classes that implement must be defined in an enclosing class that is alsoSerializable

serializable. Non-static nested classes retain an implicit reference to an instance of their enclosing class. If the
enclosing class is not serializable, the Java serialization mechanism fails with a

.java.io.NotSerializableException

Recommendation

To avoid causing a , do one of the following:NotSerializableException

If the nested class does not use any of the non-static fields orDeclare the nested class as : static

methods of the enclosing class, it is best to declare it . This removes the implicit reference to anstatic

instance of the enclosing class, and has the additional effect of breaking an unnecessary dependency
between the two classes. A similar solution is to turn the nested class into a separate top-level class.

However, this is not recommended because theMake the enclosing class implement : Serializable

implementation of inner classes may be compiler-specific, and serializing an inner class can result in
non-portability across compilers. The Java Serialization Specification states:

Serialization of inner classes (i.e., nested classes that are not static member classes),
including local and anonymous classes, is strongly discouraged for several reasons.
Because inner classes declared in non-static contexts contain implicit non-transient
references to enclosing class instances, serializing such an inner class instance will result
in serialization of its associated outer class instance as well. Synthetic fields generated by
javac (or other Java(TM) compilers) to implement inner classes are implementation
dependent and may vary between compilers; differences in such fields can disrupt
compatibility as well as result in conflicting default serialVersionUID values. The names
assigned to local and anonymous inner classes are also implementation dependent and
may differ between compilers.

Example

In the following example, the class cannot be serialized without causing a WrongSession NotSerializableException

, because it is enclosed by a non-serializable class. However, the class can be serialized because it isSession

declared as .static

1 class NonSerializableServer {
2

 3 // BAD: The following class is serializable, but the enclosing class
 4 // 'NonSerializableServer' is not. Serializing an instance of 'WrongSession'
 5 // causes a 'java.io.NotSerializableException'.
 6 class WrongSession implements Serializable {
 7 private static final long serialVersionUID = 8970783971992397218L;
 8 private int id;
 9 private String user;
 10
 11 WrongSession(int id, String user) { /*...*/ }
 12 }
 13

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 101

 14 public WrongSession getNewSession(String user) {
 15 return new WrongSession(newId(), user);
 16 }

17 }
18
19 class Server {
20

 21 // GOOD: The following class can be correctly serialized because it is static.
 22 static class Session implements Serializable {
 23 private static final long serialVersionUID = 1065454318648105638L;
 24 private int id;
 25 private String user;
 26
 27 Session(int id, String user) { /*...*/ }
 28 }
 29
 30 public Session getNewSession(String user) {
 31 return new Session(newId(), user);
 32 }

33 }

References

Java 6 Object Serialization Specification: , 1.10 The Serializable Interface 2.1 The ObjectOutputStream
.Class

http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#4539
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/output.html#933
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/output.html#933

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 102

Logic Errors

Annotate annotations with a 'RUNTIME' retention policy
Avoid array downcasts
Avoid type mismatch when calling 'Collection.contains'
Avoid type mismatch when calling 'Collection.remove'
Do not call a non-final method from a constructor
Do not perform self-assignment
Include braces for control structures

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 103

Annotate annotations with a 'RUNTIME' retention policy

Category: > Critical Logic Errors

Description: If an annotation has not been annotated with a 'RUNTIME' retention policy, checking for its
presence at runtime is not possible.

To be able to use the method on an at runtime, an annotation must beisAnnotationPresent AnnotatedElement

explicitly annotated with a retention policy. Otherwise, the annotation is not retained at runtime andRUNTIME

cannot be observed using reflection.

Recommendation

Explicitly annotate annotations with a retention policy if you want to observe their presence using RUNTIME

 at runtime.AnnotatedElement.isAnnotationPresent

Example

In the following example, the call to returns because the annotation cannot beisAnnotationPresent false

observed using reflection.

1 public class AnnotationPresentCheck {
 2 public static @interface UntrustedData { }

3
 4 @UntrustedData
 5 public static String getUserData() {
 6 Scanner scanner = new Scanner(System.in);
 7 return scanner.nextLine();
 8 }

9
 10 public static void main(String[] args) throws NoSuchMethodException, SecurityException {
 11 String data = getUserData();
 12 Method m = AnnotationPresentCheck.class.getMethod("getUserData");
 13 if(m.isAnnotationPresent(UntrustedData.class)) { // Returns 'false'
 14 System.out.println("Not trusting data from user.");
 15 }
 16 }

17 }

To correct this, the annotation is annotated with a retention policy.RUNTIME

1 public class AnnotationPresentCheckFix {
 2 @Retention(RetentionPolicy.RUNTIME) // Annotate the annotation
 3 public static @interface UntrustedData { }

4
 5 @UntrustedData
 6 public static String getUserData() {
 7 Scanner scanner = new Scanner(System.in);
 8 return scanner.nextLine();
 9 }

10
 11 public static void main(String[] args) throws NoSuchMethodException, SecurityException {
 12 String data = getUserData();
 13 Method m = AnnotationPresentCheckFix.class.getMethod("getUserData");
 14 if(m.isAnnotationPresent(UntrustedData.class)) { // Returns 'true'
 15 System.out.println("Not trusting data from user.");
 16 }
 17 }

18 }

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 104

References

Java API Documentation: , , Annotation Type Retention RetentionPolicy.RUNTIME
.AnnotatedElement.isAnnotationPresent()

http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/RetentionPolicy.html#RUNTIME
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/AnnotatedElement.html#isAnnotationPresent%28java.lang.Class%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 105

Avoid array downcasts

Category: > Critical Logic Errors

Description: Trying to cast an array of a particular type as an array of a subtype causes a
'ClassCastException' at runtime.

Some downcasts on arrays will fail at runtime. An object with dynamic type cannot be cast to , where isa A[] B[] B

a subtype of , even if all the elements of can be cast to .A a B

Recommendation

Ensure that the array creation expression constructs an array object of the right type.

Example

The following example shows an assignment that throws a at runtime.ClassCastException

1 String[] strs = (String[])new Object[]{ "hello", "world" };

To avoid the exception, a array should be created instead.String

1 String[] strs = new String[]{ "hello", "world" };

References

The Java Language Specification: , , Checked Casts at Run Time Reference Type Casting Subtyping
.among Array Types

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.10.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.10.3

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 106

Avoid type mismatch when calling 'Collection.contains'

Category: > Critical Logic Errors

Description: Calling 'Collection.contains' with an object of a different type than that of the collection is
unlikely to return 'true'.

The method of the interface has an argument of type . Therefore, you can try to checkcontains Collection Object

if an object of any type is a member of a collection, regardless of the collection's element type. However, although
you can call with an argument of a different type than that of the collection, it is unlikely that thecontains

collection actually contains an object of this type.

Recommendation

Ensure that you use the correct argument with a call to .contains

Example

In the following example, although the argument to is an integer, the code does not result in a type errorcontains

because the argument does not have to match the type of the elements of . However, the argument islist

unlikely to be found (and the body of the statement is therefore not executed), so it is probably a typographicalif

error: the argument should be enclosed in quotation marks.

1 void m(List<String> list) {
 2 if (list.contains(123)) { // Call 'contains' with non-string argument (without quotation marks)
 3 // ...
 4 }

5 }

Note that you must take particular care when working with collections over boxed types, as illustrated in the
following example. The first call to returns because you cannot compare two boxed numericcontains false

primitives of different types, in this case (in) and (the argument). The second call to Short(1) set Integer(1)

 returns because you can compare and .contains true Short(1) Short(1)

1 HashSet<Short> set = new HashSet<Short>();
2 short s = 1;
3 set.add(s);
4 // Following statement prints 'false', because the argument is a literal int, which is auto-boxed
5 // to an Integer
6 System.out.println(set.contains(1));
7 // Following statement prints 'true', because the argument is a literal int that is cast to a short,
8 // which is auto-boxed to a Short
9 System.out.println(set.contains((short)1));

References

Java API Documentation: .Collection.contains

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html#contains%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 107

Avoid type mismatch when calling 'Collection.remove'

Category: > Critical Logic Errors

Description: Calling 'Collection.remove' with an object of a different type than that of the collection is
unlikely to have any effect.

The method of the interface has an argument of type . Therefore, you can try to removeremove Collection Object

an object of any type from a collection, regardless of the collection's element type. However, although you can
call with an argument of a different type than that of the collection, it is unlikely that the collection actuallyremove

contains an object of this type.

Recommendation

Ensure that you use the correct argument with a call to .remove

Example

In the following example, although the argument to is an integer, the code does not result in a type errorcontains

because the argument to does not have to match the type of the elements of . However, the argumentremove list

is unlikely to be found and removed (and the body of the statement is therefore not executed), so it is probablyif

a typographical error: the argument should be enclosed in quotation marks.

1 void m(List<String> list) {
 2 if (list.remove(123)) { // Call 'remove' with non-string argument (without quotation marks)
 3 // ...
 4 }

5 }

Note that you must take particular care when working with collections over boxed types, as illustrated in the
following example. The first call to fails because you cannot compare two boxed numeric primitives ofremove

different types, in this case (in) and (the argument). Therefore, cannot find theShort(1) set Integer(1) remove

item to remove. The second call to succeeds because you can compare and .remove Short(1) Short(1)

Therefore, can find the item to remove.remove

1 HashSet<Short> set = new HashSet<Short>();
2 short s = 1;
3 set.add(s);
4 // Following statement fails, because the argument is a literal int, which is auto-boxed
5 // to an Integer
6 set.remove(1);
7 System.out.println(set); // Prints [1]
8 // Following statement succeeds, because the argument is a literal int that is cast to a short,
9 // which is auto-boxed to a Short
10 set.remove((short)1);
11 System.out.println(set); // Prints []

References

Java API Documentation: .Collection.remove

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html#remove%28java.lang.Object%29

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 108

Do not call a non-final method from a constructor

Category: > Critical Logic Errors

Description: If a constructor calls a method that is overridden in a subclass, the result can be
unpredictable.

If a constructor calls a method that is overridden in a subclass, it can cause the overriding method in the subclass
to be called before the subclass has been initialized. This can lead to unexpected results.

Recommendation

Do not call a non-final method from within a constructor if that method could be overridden in a subclass.

Example

In the following example, executing results in a . This is because thenew Sub("test") NullPointerException

subclass constructor implicitly calls the superclass constructor, which in turn calls the overridden methodinit

before the field is initialized in the subclass constructor.s

1 public class Super {
 2 public Super() {
 3 init();
 4 }
 5
 6 public void init() {
 7 }

8 }
9
10 public class Sub extends Super {

 11 String s;
 12 int length;

13
 14 public Sub(String s) {
 15 this.s = s==null ? "" : s;
 16 }
 17
 18 @Override
 19 public void init() {
 20 length = s.length();
 21 }

22 }

To avoid this problem:

The method in the super constructor should be made or .init final private

The initialization that is performed in the overridden method in the subclass can be moved to theinit

subclass constructor itself, or delegated to a separate final or private method that is called from within the
subclass constructor.

References

J. Bloch, , pp. 89–90. Addison-Wesley, 2008.Effective Java (second edition)
The Java Tutorials: .Writing Final Classes and Methods

http://docs.oracle.com/javase/tutorial/java/IandI/final.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 109

Do not perform self-assignment

Category: > Critical Logic Errors

Description: Assigning a variable to itself has no effect.

Assigning a variable to itself does not have any effect. Therefore, such an assignment is either completely
unnecessary, or it indicates a typo or a similar mistake.

Recommendation

If the assignment is unnecessary, remove it. If the assignment indicates a typo or a similar mistake, correct the
mistake.

Example

The following example shows part of a method that is intended to make a copy of an existing withoutMotionEvent

preserving its history. On line 8, is assigned to itself. Given that the statement is surrounded byo.mFlags

statements that transfer information from the fields of to the fields of the new event, , the statement is clearlyo ev

a mistake. To correct this, the value should be assigned to instead, as shown in the correctedmFlags ev.mFlags

method.

1 static public MotionEvent obtainNoHistory(MotionEvent o) {
 2 MotionEvent ev = obtain(o.mNumPointers, 1);
 3 ev.mDeviceId = o.mDeviceId;
 4 o.mFlags = o.mFlags; // Variable is assigned to itself
 5 ...

6 }
7
8 static public MotionEvent obtainNoHistory(MotionEvent o) {

 9 MotionEvent ev = obtain(o.mNumPointers, 1);
 10 ev.mDeviceId = o.mDeviceId;
 11 ev.mFlags = o.mFlags; // Variable is assigned correctly
 12 ...

13 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 110

Include braces for control structures

Category: > Critical Logic Errors

Description: If a control structure does not use braces, misleading indentation makes it difficult to see
which statements are within its scope.

A control structure (statements and loops) has a body that is either a block of statements or a singleif

statement. The second option may be indicated by omitting the braces: and .{ }

However, omitting the braces can lead to confusion, especially if the indentation of the code suggests that
multiple statements are within the body of a control structure when in fact they are not.

Recommendation

It is usually considered good practice to include braces for all control structures in Java. This is because it makes
it easier to maintain the code later. For example, it's easy to see at a glance which part of the code is in the scope
of an statement, and adding more statements to the body of the statement is less error-prone.if if

You should also ensure that the indentation of the code is consistent with the actual flow of control, so that it does
not confuse programmers.

Example

In the example below, the original version of is missing braces. This means that the code triggers a Cart

 at runtime if is . The corrected version of does include braces, so that the codeNullPointerException i null Cart

executes as the indentation suggests.

1 class Cart {
 2 Map<Integer, Integer> items = ...
 3 public void addItem(Item i) {
 4 // No braces and misleading indentation.
 5 if (i != null)
 6 log("Adding item: " + i);
 7 Integer curQuantity = items.get(i.getID()); // Indentation suggests that this statement
 8 // is in the body of the 'if'
 9 if (curQuantity == null) curQuantity = 0;
 10 items.put(i.getID(), curQuantity+1);
 11 }

12 }
13
14 class Cart {

 15 Map<Integer, Integer> items = ...
 16 public void addItem(Item i) {
 17 // Braces included.
 18 if (i != null) {
 19 log("Adding item: " + i);
 20 Integer curQuantity = items.get(i.getID());
 21 if (curQuantity == null) curQuantity = 0;
 22 items.put(i.getID(), curQuantity+1);
 23 }
 24 }

25 }

References

Java SE Documentation: .Compound Statements

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#15395

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 111

Naming

Avoid declaring a method with the same name as its declaring type
Avoid naming a method with the same name as a superclass method but with different capitalization

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 112

Avoid declaring a method with the same name as its declaring type

Category: > Critical Naming

Description: A method that has the same name as its declaring type may have been intended to be a
constructor.

A method that has the same name as its declaring type may be intended to be a constructor, not a method.

Example

The following example shows how the singleton design pattern is often misimplemented. The programmer
intends the constructor of to be protected so that it cannot be instantiated (because the singletonMasterSingleton

instance should be retrieved using). However, the programmer accidentally wrote in front of thegetInstance void

constructor name, which makes it a method rather than a constructor.

1 class MasterSingleton
2 {

 3 // ...
4

 5 private static MasterSingleton singleton = new MasterSingleton();
 6 public static MasterSingleton getInstance() { return singleton; }

7
 8 // Make the constructor 'protected' to prevent this class from being instantiated.
 9 protected void MasterSingleton() { }

10 }

Recommendation

Ensure that methods that have the same name as their declaring type are intended to be methods. Even if they
are intended to be methods, it may be better to rename them to avoid confusion.

References

J. Bloch and N. Gafter, , Puzzle 63. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Objection-Oriented

, §3. Addison-Wesley Longman Publishing Co. Inc., 1995.Software
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , .8.4 Method Declarations 8.8 Constructor Declarations

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.8

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 113

Avoid naming a method with the same name as a superclass method but with different
capitalization

Category: > Critical Naming

Description: A method that would override another method but does not, because the name is capitalized
differently, is confusing and may be a mistake.

If a method that would override another method but does not because the name is capitalized differently, there
are two possibilities:

The programmer intends the method to override the other method, and the difference in capitalization is a
typographical error.
The programmer does not intend the method to override the other method, in which case the similarity of
the names is very confusing.

Recommendation

If overriding intended, make the capitalization of the two methods the same.is

If overriding is intended, consider naming the methods to make the distinction between them clear.not

Example

In the following example, has been wrongly capitalized as . This means that objects of type toString tostring

 do not print correctly.Customer

1 public class Customer
2 {

 3 private String title;
 4 private String forename;
 5 private String surname;

6
 7 // ...

8
 9 public String tostring() { // Incorrect capitalization of 'toString'
 10 return title + " " + forename + " " + surname;
 11 }

12 }

References

R. C. Martin, , §17.N4. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 114

Random

Avoid using 'Math.abs' to generate a non-negative random integer

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 115

Avoid using 'Math.abs' to generate a non-negative random integer

Category: > Critical Random

Description: Calling 'Math.abs' to find the absolute value of a randomly generated integer is not
guaranteed to return a non-negative integer.

Using on the result of a call to (or) is not guaranteed to return aMath.abs Random.nextInt() Random.nextLong()

non-negative number. can return , which when passed to results inRandom.nextInt() Integer.MIN_VALUE Math.abs

the same value, . (Because of the two's-complement representation of integers in Java, theInteger.MIN_VALUE

positive equivalent of cannot be represented in the same number of bits.) The case for Integer.MIN_VALUE

 is similar.Random.nextLong()

Recommendation

If a non-negative random integer is required, use instead, and use as itsRandom.nextInt(int) Integer.MAX_VALUE

parameter. The values that might be returned do not include itself, but this solution is likely toInteger.MAX_VALUE

be sufficient for most purposes.

Another solution is to increment the value of by one, if it is negative, before passing the result toRandom.nextInt()

. This solution has the advantage that has the same probability as other numbers.Math.abs 0

Example

In the following example, is negative if returns . The example showsmayBeNegativeInt nextInt Integer.MIN_VALUE

how using the two solutions described above means that is always assigned a positive number.positiveInt

1 public static void main(String args[]) {
 2 Random r = new Random();

3
 4 // BAD: 'mayBeNegativeInt' is negative if
 5 // 'nextInt()' returns 'Integer.MIN_VALUE'.
 6 int mayBeNegativeInt = Math.abs(r.nextInt());

7
 8 // GOOD: 'nonNegativeInt' is always a value between 0 (inclusive)
 9 // and Integer.MAX_VALUE (exclusive).
 10 int nonNegativeInt = r.nextInt(Integer.MAX_VALUE);

11
 12 // GOOD: When 'nextInt' returns a negative number increment the returned value.
 13 int nextInt = r.nextInt();
 14 if(nextInt < 0)
 15 nextInt++;
 16 int nonNegativeInt = Math.abs(nextInt);

17 }

References

Java API Documentation: , , .Math.abs(int) Math.abs(long) Random
Java Language Specification, 3rd ed: .4.2.1 Integral Types and Values
JavaSolutions, April 2002: .Secrets of equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#abs%28int%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#abs%28long%29
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.1
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 116

Resource Leaks

Ensure that an input resource is closed on completion
Ensure that an output resource is closed on completion

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 117

Ensure that an input resource is closed on completion

Category: > Critical Resource Leaks

Description: A resource that is opened for reading but not closed may cause a resource leak.

A subclass of or that is opened for reading but not closed may cause a resource leak.Reader InputStream

Recommendation

Ensure that the resource is always closed to avoid a resource leak. Note that, because of exceptions, it is safest
to close a resource in a block. (However, this is unnecessary for subclasses of and finally StringReader

.)ByteArrayInputStream

Example

In the following example, the resource is opened but not closed.br

1 public class CloseReader {
 2 public static void main(String[] args) throws IOException {
 3 BufferedReader br = new BufferedReader(new FileReader("C:\\test.txt"));
 4 System.out.println(br.readLine());
 5 // ...
 6 }

7 }

In the following example, the resource is opened in a block and later closed in a block.br try finally

1 public class CloseReaderFix {
 2 public static void main(String[] args) throws IOException {
 3 BufferedReader br = null;
 4 try {
 5 br = new BufferedReader(new FileReader("C:\\test.txt"));
 6 System.out.println(br.readLine());
 7 }
 8 finally {
 9 if(br != null)
 10 br.close(); // 'br' is closed
 11 }
 12 // ...
 13 }

14 }

References

IBM developerWorks: .Java theory and practice: Good housekeeping practices

http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 118

Ensure that an output resource is closed on completion

Category: > Critical Resource Leaks

Description: A resource that is opened for writing but not closed may cause a resource leak.

A subclass of or that is opened for writing but not properly closed later may cause a resourceWriter OutputStream

leak.

Recommendation

Ensure that the resource is always closed to avoid a resource leak. Note that, because of exceptions, it is safest
to close a resource properly in a block. (However, this is unnecessary for subclasses of andfinally StringWriter

.)ByteArrayOutputStream

Example

In the following example, the resource is opened but not closed.bw

1 public class CloseWriter {
 2 public static void main(String[] args) throws IOException {
 3 BufferedWriter bw = new BufferedWriter(new FileWriter("C:\\test.txt"));
 4 bw.write("Hello world!");
 5 // ...
 6 }

7 }

In the following example, the resource is opened in a block and later closed in a block.bw try finally

1 public class CloseWriterFix {
 2 public static void main(String[] args) throws IOException {
 3 BufferedWriter bw = null;
 4 try {
 5 bw = new BufferedWriter(new FileWriter("C:\\test.txt"));
 6 bw.write("Hello world!");
 7 }
 8 finally {
 9 if(bw != null)
 10 bw.close(); // 'bw' is closed
 11 }
 12 // ...
 13 }

14 }

References

IBM developerWorks: .Java theory and practice: Good housekeeping practices

http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 119

Strings

Avoid appending an array to a string without converting it to a string
Avoid calling the default implementation of 'toString'
Avoid printing an array without converting it to a string

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 120

Avoid appending an array to a string without converting it to a string

Category: > Critical Strings

Description: Appending an array to a string, without first converting the array to a string, produces
unreadable results.

Appending an array to a is likely to produce unintended results. That is, the result does not contain theString

contents of the array. This is because the array is implicitly converted to a using , whichString Object.toString

just returns the following value:

getClass().getName() + '@' + Integer.toHexString(hashCode())

Recommendation

When converting an array to a readable string, use for one-dimensional arrays, or Arrays.toString

 for multi-dimensional arrays. These functions iterate over the contents of the array andArrays.deepToString

produce human-readable output.

Example

In the following example, the contents of the array are printed out only if is called on thewords Arrays.toString

array first. Similarly, the contents of the multi-dimensional array are printed out only if wordMatrix

 is called on the array first.Arrays.deepToString

1 public static void main(String args[]) {
 2 String[] words = {"Who", "is", "John", "Galt"};
 3 String[][] wordMatrix = {{"There", "is"}, {"no", "spoon"}};
 4
 5 // BAD: This implicitly uses 'Object.toString' to convert the contents
 6 // of 'words[]', and prints out something similar to:
 7 // Words: [Ljava.lang.String;@459189e1
 8 System.out.println("Words: " + words);
 9
 10 // GOOD: 'Arrays.toString' calls 'toString' on
 11 // each of the array's elements. The statement prints out:
 12 // Words: [Who, is, John, Galt]
 13 System.out.println("Words: " + Arrays.toString(words));
 14
 15 // ALMOST RIGHT: This calls 'toString' on each of the multi-dimensional
 16 // array's elements. However, because the elements are arrays, the statement
 17 // prints out something similar to:
 18 // Word matrix: [[Ljava.lang.String;@55f33675, [Ljava.lang.String;@527c6768]]
 19 System.out.println("Word matrix: " + Arrays.toString(wordMatrix));
 20
 21 // GOOD: This properly prints out the contents of the multi-dimensional array:
 22 // Word matrix: [[There, is], [no, spoon]]
 23 System.out.println("Word matrix: " + Arrays.deepToString(wordMatrix));

24 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java 6 API Specification: , , .Arrays.toString() Arrays.deepToString() Object.toString()

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 121

Avoid calling the default implementation of 'toString'

Category: > Critical Strings

Description: Calling the default implementation of 'toString' returns a value that is unlikely to be what you
expect.

In most cases, calling the default implementation of in is not what is intended when atoString java.lang.Object

string representation of an object is required. The output of the default method consists of the classtoString

name of the object as well as the object's hashcode, which is usually not what was intended.

This rule includes explicit and implicit calls to that resolve to , particularlytoString java.lang.Object.toString

calls that are used in print or log statements.

Recommendation

For objects that are printed, define a method for the object that returns a human-readable string.toString

Example

The following example shows that printing an object makes an implicit call to . Because the class toString

 does not have a method, is called instead, which returns the class nameWrongPerson toString Object.toString

and the object's hashcode.wp

1 // This class does not have a 'toString' method, so 'java.lang.Object.toString'
2 // is used when the class is converted to a string.
3 class WrongPerson {

 4 private String name;
 5 private Date birthDate;
 6
 7 public WrongPerson(String name, Date birthDate) {
 8 this.name =name;
 9 this.birthDate = birthDate;
 10 }

11 }
12
13 public static void main(String args[]) throws Exception {

 14 DateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-dd");
 15 WrongPerson wp = new WrongPerson("Robert Van Winkle", dateFormatter.parse("1967-10-31"));

16
 17 // BAD: The following statement implicitly calls 'Object.toString',
 18 // which returns something similar to:
 19 // WrongPerson@4383f74d
 20 System.out.println(wp);

21 }

In contrast, in the following modification of the example, the class does have a method, whichPerson toString

returns a string containing the arguments that were passed when the object was created.p

1 // This class does have a 'toString' method, which is used when the object is
2 // converted to a string.
3 class Person {

 4 private String name;
 5 private Date birthDate;
 6
 7 public String toString() {
 8 DateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-dd");
 9 return "(Name: " + name + ", Birthdate: " + dateFormatter.format(birthDate) + ")";
 10 }
 11

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 122

 12 public Person(String name, Date birthDate) {
 13 this.name =name;
 14 this.birthDate = birthDate;
 15 }

16 }
17
18 public static void main(String args[]) throws Exception {

 19 DateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-dd");
 20 Person p = new Person("Eric Arthur Blair", dateFormatter.parse("1903-06-25"));

21
 22 // GOOD: The following statement implicitly calls 'Person.toString',
 23 // which correctly returns a human-readable string:
 24 // (Name: Eric Arthur Blair, Birthdate: 1903-06-25)
 25 System.out.println(p);

26 }

References

J. Bloch, , Item 10. Addison-Wesley, 2008.Effective Java (second edition)
Java 6 API Specification: .Object.toString()
Java Language Specification, 3rd ed: .5.4 String Conversion

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#186035

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 123

Avoid printing an array without converting it to a string

Category: > Critical Strings

Description: Directly printing an array, without first converting the array to a string, produces unreadable
results.

Printing an array is likely to produce unintended results. That is, the result does not contain the contents of the
array. This is because the array is implicitly converted to a string using , which just returns theObject.toString

following value:

getClass().getName() + '@' + Integer.toHexString(hashCode())

Recommendation

When converting an array to a readable string, use for one-dimensional arrays, or Arrays.toString

 for multi-dimensional arrays. These functions iterate over the contents of the array andArrays.deepToString

produce human-readable output.

Example

In the following example, the contents of the array can be printed out only if is called onwords Arrays.toString

the array first. Similarly, the contents of the multi-dimensional array can be printed out only if wordMatrix

 is called on the array first.Arrays.deepToString

1 public static void main(String args[]) {
 2 String[] words = {"Who", "is", "John", "Galt"};
 3 String[][] wordMatrix = {{"There", "is"}, {"no", "spoon"}};
 4
 5 // BAD: This implicitly uses 'Object.toString' to convert the contents
 6 // of 'words[]', and prints out something similar to:
 7 // [Ljava.lang.String;@459189e1
 8 System.out.println(words);
 9
 10 // GOOD: 'Arrays.toString' calls 'toString' on
 11 // each of the array's elements. The statement prints out:
 12 // [Who, is, John, Galt]
 13 System.out.println(Arrays.toString(words));
 14
 15 // ALMOST RIGHT: This calls 'toString' on each of the multi-dimensional
 16 // array's elements. However, because the elements are arrays, the statement
 17 // prints out something similar to:
 18 // [[Ljava.lang.String;@55f33675, [Ljava.lang.String;@527c6768]]
 19 System.out.println(Arrays.toString(wordMatrix));
 20
 21 // GOOD: This properly prints out the contents of the multi-dimensional array:
 22 // [[There, is], [no, spoon]]
 23 System.out.println(Arrays.deepToString(wordMatrix));

24 }

References

Java 6 API Documentation: , , .Arrays.toString() Arrays.deepToString() Object.toString()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 124

Types

Avoid boxed types

Critical rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 125

Avoid boxed types

Category: > Critical Types

Description: Implicit boxing or unboxing of primitive types, such as 'int' and 'double', may cause confusion
and subtle performance problems.

For each primitive type, such as or , there is a corresponding reference type, such as or int double boxed Integer

. These boxed versions differ from their primitive equivalents because they can hold an undefined Double null

element in addition to numeric (or other) values, and there can be more than one instance of a boxed type
representing the same value.

In Java 5 and later, automated boxing and unboxing conversions have been added to the language. Although
these automated conversions reduce the verbosity of the code, they can hide potential problems. Such problems
include performance issues because of unnecessary object creation, and confusion of boxed types with their
primitive equivalents.

Recommendation

Generally, you should use primitive types (boolean, byte, char, short, int, long, float, double) in preference to
boxed types (Boolean, Byte, Character, Short, Integer, Long, Float, Double), whenever there is a choice.
Exceptions are when a primitive value is used in collections and other parameterized types, or when a valuenull

is explicitly used to represent an undefined value.

Where they cannot be avoided, perform boxing and unboxing conversions explicitly to avoid possible confusion of
boxed types and their primitive equivalents. In cases where boxing conversions cause performance issues, use
primitive types instead.

Example

In the following example, declaring the variable to have boxed type causes it to be unboxed and reboxedsum Long

during execution of the statement inside the loop.

1 Long sum = 0L;
2 for (long k = 0; k < Integer.MAX_VALUE; k++) {

 3 sum += k; // AVOID: Inefficient unboxing and reboxing of 'sum'
4 }

To avoid this inefficiency, declare to have primitive type instead.sum long

References

J. Bloch, , Item 49. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: .5.1.7 Boxing Conversion
Java SE Documentation: .Autoboxing

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.1.7
http://docs.oracle.com/javase/6/docs/technotes/guides/language/autoboxing.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 126

Important

Rules in this category should be followed and violations of these rules should be corrected where practical.

Rule types:

Arithmetic (1)
Complexity
Concurrency (1)
Coupling
Declarations (2)
Duplicate Code
Encapsulation (1)
Equality (1)
Exceptions (1)
Expressions (1)
Extensibility (1)
Incomplete Code (1)
Inefficient Code
Java objects (2)
JUnit
Logic Errors (1)
Magic Constants
Naming (2)
Random (1)
Result Checking
Size
Spring
Strings (1)
Swing
Types (2)
Useless Code

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 127

Arithmetic (1)

Avoid checking the sign of the result of a bitwise operation
Avoid confusion when multiplying a remainder by an integer
Do not check parity by comparing to a positive number

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 128

Avoid checking the sign of the result of a bitwise operation

Category: > Important Arithmetic (1)

Description: Checking the sign of the result of a bitwise operation may yield unexpected results.

Checking whether the result of a bitwise operation is greater than zero may yield unexpected results.

Recommendation

It is more robust to check whether the result of the bitwise operation is .non-zero

Example

In the following example, the expression assigned to variable is a robust way to check that the th bit of bad not n x

is set. With the given values of (all bits are set) and , the expression has the value , andx n x & (1<<n) -2147483648

the variable is assigned , even though the 31st bit of is, in fact, set.bad false x

1 int x = -1;
2 int n = 31;
3
4 boolean bad = (x & (1<<n)) > 0;

In the following example, the expression assigned to variable is a robust way to check that the th bit of isgood n x

set. With the given values of and , the variable is assigned .x n good true

1 int x = -1;
2 int n = 31;
3
4 boolean good = (x & (1<<n)) != 0;

References

The Java Language Specification: .Integer Bitwise Operators &, ^, and |

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.1

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 129

Avoid confusion when multiplying a remainder by an integer

Category: > Important Arithmetic (1)

Description: Using the remainder operator with the multiplication operator without adding parentheses to
clarify precedence may cause confusion.

Using the remainder operator with the multiplication operator may not give you the result that you expect unless%

you use parentheses. This is because the remainder operator has the same precedence as the multiplication
operator, and the operators are left-associative.

Recommendation

When you use the remainder operator with the multiplication operator, ensure that the expression is evaluated as
you expect. If necessary, add parentheses.

Example

Consider a time in milliseconds, represented by . To calculate the number of milliseconds remaining after thet

time has been converted to whole minutes, you might write . However, this is equal to t % 60 * 1000 (t % 60) *

, which gives the wrong result. Instead, the expression should be .1000 t % (60 * 1000)

References

J. Bloch and N. Gafter, , Puzzle 35. Addison-Wesley,Java Puzzlers: Traps, Pitfalls, and Corner Cases
2005.
The Java Tutorials: .Operators

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 130

Do not check parity by comparing to a positive number

Category: > Important Arithmetic (1)

Description: Code that uses 'x % 2 == 1' or 'x % 2 > 0' to check whether a number is odd does not work
for negative numbers.

Avoid using or to check whether a number is odd, or to check whether it isx % 2 == 1 x % 2 > 0 x x % 2 != 1

even. Such code does not work for negative numbers. For example, equals , not .-5 % 2 -1 1

Recommendation

Consider using to check for odd and to check for even.x % 2 != 0 x % 2 == 0

Example

-9 is an odd number but this example does not detect it as one. This is because is -1, not 1.-9 % 2

1 class CheckOdd {
 2 private static boolean isOdd(int x) {
 3 return x % 2 == 1;
 4 }
 5
 6 public static void main(String[] args) {
 7 System.out.println(isOdd(-9)); // prints false
 8 }

9 }

It would be better to check if the number is even and then invert that check.

1 class CheckOdd {
 2 private static boolean isOdd(int x) {
 3 return x % 2 != 0;
 4 }
 5
 6 public static void main(String[] args) {
 7 System.out.println(isOdd(-9)); // prints true
 8 }

9 }

References

J. Bloch and N. Gafter, , Puzzle 1. Addison-Wesley, 2005.Java Puzzlers: Traps, Pitfalls, and Corner Cases
The Java Language Specification: .Remainder Operator %

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 131

Complexity

Avoid creating classes that have a high response
Avoid creating methods that call many other methods
Avoid creating methods that have a high cyclomatic complexity

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 132

Avoid creating classes that have a high response

Category: > Important Complexity

Description: A class whose methods or constructors can call many unique methods or constructors may
be difficult to maintain. The number of unique methods that are called should be less than 350.

 is the number of unique methods (or constructors) that can be called by all the methods (orResponse
constructors) of a class. For example, if a class has two methods (X and Y), and one method calls methods A
and B, and the other method calls methods A and C, the class's response is 3 (methods A, B, and C are called).

Classes that have a high response can be difficult to understand and test. This is because you have to read
through all the methods that can possibly be called to fully understand the class.

Recommendation

Generally, when a class has a high response, it is because it contains methods that individually make large
numbers of calls or because it has high efferent coupling. The solution is therefore to fix these underlying
problems, and the class's response decreases accordingly.

References

S. R. Chidamber and C. F. Kemerer, . IEEE Transactions onA metrics suite for object-oriented design
Software Engineering, 20(6):476-493, 1994.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 133

Avoid creating methods that call many other methods

Category: > Important Complexity

Description: A method or constructor that calls many other methods may be difficult to maintain. The
number of other methods that are called should be less than 100.

If the number of calls that is made by a method (or constructor) to other methods is high, the method can be
difficult to understand, because you have to read through all the methods that it calls to fully understand what it
does. There are various reasons why a method may make a high number of calls, including:

The method is simply too large in general.
The method has too many responsibilities (see [Martin]).
The method spends all of its time delegating rather than doing any work itself.

Recommendation

The appropriate action depends on the reason why the method makes a high number of calls:

If the method is too large, you should refactor it into multiple smaller methods, using the 'Extract Method'
refactoring from [Fowler], for example.
If the method is taking on too many responsibilities, a new layer of methods can be introduced below the
top-level method, each of which can do some of the original work. The top-level method then only needs to
delegate to a much smaller number of methods, which themselves delegate to the methods lower down.
If the method spends all of its time delegating, some of the work that is done by the subsidiary methods
can be moved into the top-level method, and the subsidiary methods can be removed. This is the
refactoring called 'Inline Method' in [Fowler].

References

M. Fowler, . Addison-Wesley, 1999.Refactoring
R. Martin, . Published online.The Single Responsibility Principle

http://www.objectmentor.com/resources/articles/srp.pdf

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 134

Avoid creating methods that have a high cyclomatic complexity

Category: > Important Complexity

Description: A high number of possible execution paths through a method or constructor may make it
difficult to understand and test. The number of execution paths should be less than 40.

The cyclomatic complexity of a method (or constructor) is the number of possible linearly-independent execution
paths through that method (see [Wikipedia]). It was originally introduced as a complexity measure by Thomas
McCabe [McCabe].

A method with high cyclomatic complexity is typically difficult to understand and test.

Example

1 int f(int i, int j) {
 2 int result;
 3 if(i % 2 == 0) {
 4 result = i + j;
 5 }
 6 else {
 7 if(j % 2 == 0) {
 8 result = i * j;
 9 }
 10 else {
 11 result = i - j;
 12 }
 13 }
 14 return result;

15 }

The control flow graph for this method is as follows:

As you can see from the graph, the number of linearly-independent execution paths through the method is 3.
Therefore, the cyclomatic complexity is 3.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 135

Recommendation

Simplify methods that have a high cyclomatic complexity. For example, tidy up complex logic, and/or split
methods into multiple smaller methods using the 'Extract Method' refactoring from [Fowler].

References

M. Fowler, . Addison-Wesley, 1999.Refactoring
T. J. McCabe, . IEEE Transactions on Software Engineering, SE-2(4), DecemberA Complexity Measure
1976.
Wikipedia: .Cyclomatic complexity

http://en.wikipedia.org/wiki/Cyclomatic_complexity

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 136

Concurrency (1)

API Misuse (1)

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 137

API Misuse (1)

Do not directly call 'run'

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 138

Do not directly call 'run'

Category: > > Important Concurrency (1) API Misuse (1)

Description: Directly calling a 'Thread' object's 'run' method does not start a separate thread but executes
the method within the current thread.

A direct call of a object's method does not start a separate thread. The method is executed within theThread run

current thread. This is an unusual use because is normally intended to be called from within aThread.run()

separate thread.

Recommendation

To execute from within a separate thread, do one of the following:Runnable.run

Construct a object using the object, and call on the object.Thread Runnable start Thread

Define a subclass of a object, and override the definition of its method. Then construct anThread run

instance of this subclass and call on that instance directly.start

Example

In the following example, the main thread, , calls the child thread, , using . This causesThreadDemo NewThread run

the child thread to run to completion before the rest of the main thread is executed, so that "Child thread activity"
is printed before "Main thread activity".

1 public class ThreadDemo {
 2 public static void main(String args[]) {
 3 NewThread runnable = new NewThread();

4
 5 runnable.run(); // Call to 'run' does not start a separate thread

6
 7 System.out.println("Main thread activity.");
 8 }

9 }
10
11 class NewThread extends Thread {

 12 public void run() {
 13 try {
 14 Thread.sleep(10000);
 15 }
 16 catch (InterruptedException e) {
 17 System.out.println("Child interrupted.");
 18 }
 19 System.out.println("Child thread activity.");
 20 }

21 }

To enable the two threads to run concurrently, create the child thread and call , as shown below. Thisstart

causes the main thread to continue while the child thread is waiting, so that "Main thread activity" is printed
before "Child thread activity".

1 public class ThreadDemo {
 2 public static void main(String args[]) {
 3 NewThread runnable = new NewThread();
 4
 5 runnable.start(); // Call 'start' method
 6
 7 System.out.println("Main thread activity.");
 8 }

9 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 139

References

The Java Tutorials: .Defining and Starting a Thread

http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 140

Coupling

Avoid creating classes that depend on many other types
Avoid feature envy from a method to a class
Avoid hub classes
Avoid inappropriate intimacy between classes

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 141

Avoid creating classes that depend on many other types

Category: > Important Coupling

Description: A class that depends on many other types is quite brittle. The number of dependencies on
other types should be less than 30.

Efferent coupling is the number of outgoing dependencies for each class. In other words, it is the number of other
types on which each class depends.

A class that depends on many other types is quite brittle, because if any of its dependencies change, the class
itself may have to change as well. Furthermore, the reason for the high number of dependencies is often that
different parts of the class depend on different groups of other types, so it is common to find that classes with
high efferent coupling also lack cohesion.

Recommendation

You can reduce efferent coupling by splitting up a class so that each part depends on fewer types.

Example

In the following example, class depends on both and .X Y Z

1 class X {
 2 public void iUseY(Y y) {
 3 y.doStuff();
 4 }

5
 6 public Y soDoY() {
 7 return new Y();
 8 }

9
 10 public Z iUseZ(Z z1, Z z2) {
 11 return z1.combine(z2);
 12 }

13 }

However, the methods that use do not use , and the methods that use do not use . Therefore, the class canY Z Z Y

be split into two classes, one of which depends only on and the other only on Y Z

1 class YX {
 2 public void iUseY(Y y) {
 3 y.doStuff();
 4 }

5
 6 public Y soDoY() {
 7 return new Y();
 8 }

9 }
10
11 class ZX {

 12 public Z iUseZ(Z z1, Z z2) {
 13 return z1.combine(z2);
 14 }

15 }

Although this is a slightly artificial example, this sort of situation does tend to occur in more complicated classes,
so the general technique is quite widely applicable.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 142

References

IBM developerWorks: .Evolutionary architecture and emergent design: Emergent design through metrics
R. Martin, . Pearson, 2011.Agile Software Development: Principles, Patterns and Practices

http://www.ibm.com/developerworks/library/j-eaed6/

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 143

Avoid feature envy from a method to a class

Category: > Important Coupling

Description: A method that uses more methods or variables from another (unrelated) class than from its
own class violates the principle of putting data and behavior in the same place.

Feature envy refers to situations where a method is "in the wrong place", because it does not use many methods
or variables of its own class, but uses a whole range of methods or variables from some other class. This violates
the principle of putting data and behavior in the same place, and exposes internals of the other class to the
method.

Recommendation

For each method that may be exhibiting feature envy, see if it needs to be declared in its present location, or if it
can be moved to the class it is "envious" of. A common example is a method that calls a large number of getters
on another class to perform some calculation that does not rely on anything from its own class. In such cases, the
method should be moved to the class containing the data. If the calculation depends on some values from the
method's current class, they can either be passed as arguments or accessed using getters from the other class.

If it is inappropriate to move the entire method, see if all the dependencies on the other class are concentrated in
just one part of the method. If so, they can be moved into a method of their own. This method can then be moved
to the other class and called from the original method.

If a class is envious of functionality defined in a superclass, perhaps the superclass needs to be re-written to
become more extensible and allow its subtypes to define new behavior without them depending so deeply on the
superclass's implementation. The pattern may be useful in achieving this.template method

Modern IDEs provide several refactorings that may be useful in addressing instances of feature envy, typically
under the names of "Move method" and "Extract method".

Occasionally behavior can be misinterpreted as feature envy when in fact it is justified. The most common
examples are complex design patterns like or , where the goal is to separate data from behavior.visitor strategy

Example

In the following example, initially the method is in the class, but it only uses data belonginggetTotalPrice Basket

to the class. Therefore, it represents an instance of feature envy. To refactor it, can be movedItem getTotalPrice

to and its parameter can be removed. The resulting code is easier to understand and keep consistent.Item

1 // Before refactoring:
2 class Item { .. }
3 class Basket {

 4 // ..
 5 float getTotalPrice(Item i) {
 6 float price = i.getPrice() + i.getTax();
 7 if (i.isOnSale())
 8 price = price - i.getSaleDiscount() * price;
 9 return price;
 10 }

11 }
12
13 // After refactoring:
14 class Item {

 15 // ..
 16 float getTotalPrice() {
 17 float price = getPrice() + getTax();

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 144

 18 if (isOnSale())
 19 price = price - getSaleDiscount() * price;
 20 return price;
 21 }

22 }

The refactored code is still appropriate, even if some data from the class is necessary for the computationBasket

of the total price. For example, if the class applies a bulk discount when a sufficient number of items are inBasket

the basket, an "additional discount" parameter can be added to . Alternatively, theItem.getTotalPrice(..)

application of the discount can be performed in a method in that calls .Basket Item.getTotalPrice

References

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.software

W. C. Wake, , pp. 93–94. Addison-Wesley Professional, 2004.Refactoring Workbook

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 145

Avoid hub classes

Category: > Important Coupling

Description: Hub classes, which are classes that use, and are used by, many other classes, are complex
and difficult to change without affecting the rest of the system.

A is a class that depends on many other classes, and on which many other classes depend.hub class

For the purposes of this rule, a is any use of one class in another. Examples include:dependency

Using another class as the declared type of a variable or field
Using another class as an argument type for a method
Using another class as a superclass in the declarationextends

Calling a method defined in the class

A class can be regarded as a hub class when both the incoming dependencies and the outgoing source
dependencies are particularly high. (Outgoing source dependencies are dependencies on other source classes,
rather than library classes like .)java.lang.Object

It is undesirable to have many hub classes because they are extremely difficult to maintain. This is because many
other classes depend on a hub class, and so the other classes have to be tested and possibly adapted after each
change to the hub class. Also, when one of a hub class's direct dependencies changes, the behavior of the hub
class and all of its dependencies has to be checked and possibly adapted.

Recommendation

One common reason for a class to be regarded as a hub class is that it tries to do too much, including unrelated
functionality that depends on different parts of the code base. If possible, split such classes into several better
encapsulated classes.

Another common reason is that the class is a "struct-like" class that has many fields of different types. Introducing
some intermediate grouping containers to make it clearer what fields belong together may be a good option.

References

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.software

W. C. Wake, . Addison-Wesley Professional, 2004.Refactoring Workbook

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 146

Avoid inappropriate intimacy between classes

Category: > Important Coupling

Description: Two otherwise-unrelated classes that share too much information about each other are
difficult to maintain, change and understand.

Inappropriate intimacy is an anti-pattern that describes a pair of otherwise-unrelated classes that are too tightly
coupled: each class uses a significant number of methods and fields of the other. This makes both classes
difficult to maintain, change and understand. Inappropriate intimacy is the same as the "feature envy" anti-pattern
but in both directions: each class is "envious" of some functionality or data defined in the other class.

Recommendation

The solution might be as simple as moving some misplaced methods to their rightful place, or perhaps some
tangled bits of code need to be extracted to their own methods first before being moved.

Sometimes the entangled parts (both fields and methods) indicate a missing object or level of abstraction. It might
make sense to combine them into a new type that can be used in both classes. Perhaps delegation needs to be
introduced to hide some implementation details.

It may be necessary to convert the bidirectional association into a unidirectional relationship, possibly by using
dependency inversion.

Modern IDEs provide refactoring support for this sort of issue, usually with the names "Move method", "Extract
method" or "Extract class".

References

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.software

W. C. Wake, , pp. 95–96. Addison-Wesley Professional, 2004.Refactoring Workbook

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 147

Declarations (2)

Avoid assignment to parameters in a method or constructor
Avoid using the same name for a field and a variable

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 148

Avoid assignment to parameters in a method or constructor

Category: > Important Declarations (2)

Description: Changing a parameter's value in a method or constructor may decrease code readability.

Programmers usually assume that the value of a parameter is the value that was passed in to the method or
constructor. Assigning a different value to a parameter in a method or constructor invalidates that assumption.

Recommendation

Avoid assignment to parameters by doing one of the following:

Introduce a local variable and assign to that instead.
Use an expression directly rather than assigning it to a parameter.

Example

In the following example, the first method shows assignment to the parameter . The second method showsmiles

how to avoid this by using the expression . The third method shows how to avoid themiles * KM_PER_MILE

assignment by declaring a local variable and assigning to that.kilometres

1 final private static double KM_PER_MILE = 1.609344;
2
3 // AVOID: Example that assigns to a parameter
4 public double milesToKM(double miles) {

 5 miles *= KM_PER_MILE;
 6 return miles;

7 }
8
9 // GOOD: Example of using an expression instead
10 public double milesToKM(double miles) {

 11 return miles * KM_PER_MILE;
12 }
13
14 // GOOD: Example of using a local variable
15 public double milesToKM(double miles) {

 16 double kilometres = miles * KM_PER_MILE;
 17 return kilometres;

18 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Basics: .Methods 4 - Local variables

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://www.leepoint.net/JavaBasics/methods/methods-22-local-variables.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 149

Avoid using the same name for a field and a variable

Category: > Important Declarations (2)

Description: A method in which a variable is declared with the same name as a field is difficult to
understand.

If a method declares a local variable with the same name as a field, then it is very easy to mix up the two when
reading or modifying the program.

Recommendation

Consider using different names for the field and local variable to make the difference between them clear.

Example

The following example shows a local variable that has the same name as a field.values

1 public class Container
2 {

 3 private int[] values; // Field called 'values'
 4
 5 public Container (int... values) {
 6 this.values = values;
 7 }

8
 9 public Container dup() {
 10 int length = values.length;
 11 int[] values = new int[length]; // Local variable called 'values'
 12 Container result = new Container(values);
 13 return result;
 14 }

15 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: .6.4 Shadowing and Obscuring

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 150

Duplicate Code

Avoid duplicate anonymous classes
Avoid duplicate methods
Avoid mostly duplicate classes
Avoid mostly duplicate files
Avoid mostly duplicate methods
Avoid mostly similar files

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 151

Avoid duplicate anonymous classes

Category: > Important Duplicate Code

Description: Duplicated anonymous classes indicate that refactoring is necessary.

Anonymous classes are a common way of creating implementations of an interface or abstract class whose
functionality is really only needed once. Duplicating the definition of an anonymous class in several places is
usually a sign that refactoring is necessary.

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Introduce a concrete class that contains the definition just once, and replace the anonymous classes with
instances of this concrete class.

Example

In the following example, the definition of the class is duplicated for each button that needs toaddActionListener

use it. A better solution is shown that defines just one class, , which is used by each button.MultiplexingListener

1 // BAD: Duplicate anonymous classes:
2 button1.addActionListener(new ActionListener() {

 3 public void actionPerfored(ActionEvent e)
 4 {
 5 for (ActionListener listener: listeners)
 6 listeners.actionPerformed(e);
 7 }

8 });
9
10 button2.addActionListener(new ActionListener() {

 11 public void actionPerfored(ActionEvent e)
 12 {
 13 for (ActionListener listener: listeners)
 14 listeners.actionPerformed(e);
 15 }

16 });
17
18 // ... and so on.
19
20 // GOOD: Better solution:
21 class MultiplexingListener implements ActionListener {

 22 public void actionPerformed(ActionEvent e) {
 23 for (ActionListener listener : listeners)
 24 listener.actionPerformed(e);
 25 }

26 }
27
28 button1.addActionListener(new MultiplexingListener());
29 button2.addActionListener(new MultiplexingListener());
30 // ... and so on.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 152

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 153

Avoid duplicate methods

Category: > Important Duplicate Code

Description: Duplicated methods make code more difficult to understand and introduce a risk of changes
being made to only one copy.

A method should never be duplicated exactly in several places in the code. The severity of this problem is higher
for longer methods than for extremely short methods of one or two statements, but there are usually better ways
of achieving the same effect.

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

At its simplest, the duplication can be addressed by simply removing all but one of the duplicate method
definitions, and changing calls to the removed methods so that they call the remaining function instead.

This may not be possible because of visibility or accessibility. A common example is where two classes
implement the same functionality but neither is a subtype of the other, so it is not possible to inherit a single
method definition. In such cases, introducing a common superclass to share the duplicated code is a possible
option. Alternatively, if the methods do not need access to private object state, they can be moved to a shared
utility class that just provides the functionality itself.

Example

In the following example, and contain duplicate methods. The methodRowWidget ColumnWidget collectChildren

should probably be moved into the superclass, , and shared between and .Widget RowWidget ColumnWidget

1 class RowWidget extends Widget {
 2 // ...
 3 public void collectChildren(Set<Widget> result) {
 4 for (Widget child : this.children) {
 5 if (child.isVisible()) {
 6 result.add(children);
 7 child.collectChildren(result);
 8 }
 9 }
 10 }

11 }
12
13 class ColumnWidget extends Widget {

 14 // ...
 15 public void collectChildren(Set<Widget> result) {
 16 for (Widget child : this.children) {
 17 if (child.isVisible()) {
 18 result.add(children);
 19 child.collectChildren(result);
 20 }
 21 }
 22 }

23 }

Alternatively, if not all kinds of actually need (for example, not all of them have children),Widget collectChildren

it might be necessary to introduce a new, possibly abstract, class under . For example, the new class mightWidget

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 154

be called and include a single definition of . Both and ContainerWidget collectChildren RowWidget ColumnWidget

could extend the class and inherit .collectChildren

Modern IDEs may provide refactoring support for this sort of issue, usually with the names "Pull up" or "Extract
supertype".

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 155

Avoid mostly duplicate classes

Category: > Important Duplicate Code

Description: Classes in which most of the methods are duplicated in another class make code more
difficult to understand and introduce a risk of changes being made to only one copy.

When most of the methods in one class are duplicated in one or more other classes, the classes themselves are
regarded as .mostly duplicate

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated classes are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them.

It is more common to see duplication of many methods between two classes, leaving just a few that are actually
different. Decide whether the differences are intended or the result of an inconsistent update to one of the copies:

If the two classes serve different purposes but many of their methods are duplicated, this indicates that
there is a missing level of abstraction. Introducing a common super-class to define the common methods
is likely to prevent many problems in the long term. Modern IDEs may provide refactoring support for this
sort of issue, usually with the names "Pull up" or "Extract supertype".
If the two classes serve the same purpose and are different only as a result of inconsistent updates then
treat the classes as completely duplicate. Determine the most up-to-date and correct version of the code
and eliminate all near duplicates.

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 156

Avoid mostly duplicate files

Category: > Important Duplicate Code

Description: Files in which most of the lines are duplicated in another file make code more difficult to
understand and introduce a risk of changes being made to only one copy.

When most of the lines in one file are duplicated in one or more other files, the files themselves are regarded as
.mostly duplicate

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated files are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them. A common exception
is generated code that simply occurs in several places in the source tree.

It is more common to see duplication of many lines between two files, leaving just a few that are actually different.
Decide whether the differences are intended or the result of an inconsistent update to one of the copies:

If the two files serve different purposes but many of their lines are duplicated, this indicates that there is a
missing level of abstraction. Look for ways to share the functionality, either by extracting a utility class for
parts of it or by encapsulating the common parts into a new super class of any classes involved.
If the two files serve the same purpose and are different only as a result of inconsistent updates then treat
the files as completely duplicate. Determine the most up-to-date and correct version of the code and
eliminate all near duplicates.

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 157

Avoid mostly duplicate methods

Category: > Important Duplicate Code

Description: Methods in which most of the lines are duplicated in another method make code more
difficult to understand and introduce a risk of changes being made to only one copy.

When most of the lines in one method are duplicated in one or more other methods, the methods themselves are
regarded as or .mostly duplicate similar

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated methods are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them.

It is more common to see duplication of many lines between two methods, leaving just a few that are actually
different. Decide whether the differences are intended or the result of an inconsistent update to one of the copies.

If the two methods serve different purposes but many of their lines are duplicated, this indicates that there
is a missing level of abstraction. Look for ways of encapsulating the commonality and sharing it while
retaining the differences in functionality. Perhaps the method can be moved to a single place and given an
additional parameter, allowing it to cover all use cases. Alternatively, there may be a common
pre-processing or post-processing step that can be extracted to its own (shared) method, leaving only the
specific parts in the existing methods. Modern IDEs may provide refactoring support for this sort of issue,
usually with the names "Extract method", "Change method signature", "Pull up" or "Extract supertype".
If the two methods serve the same purpose and are different only as a result of inconsistent updates then
treat the methods as completely duplicate. Determine the most up-to-date and correct version of the code
and eliminate all near duplicates. Callers of the removed methods should be updated to call the remaining
method instead.

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 158

Avoid mostly similar files

Category: > Important Duplicate Code

Description: Files in which most of the lines are similar to those in another file make code more difficult to
understand and introduce a risk of changes being made to only one copy.

When most of the lines in one file have corresponding "similar" lines in one or more other files, the files
themselves are regarded as . Two lines are defined as similar if they are either identical or containmostly similar
only very minor differences.

Code duplication in general is highly undesirable for a range of reasons. The artificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Consider whether the differences are deliberate or a result of an inconsistent update to one of the clones. If the
latter, then treating the files as completely duplicate and eliminating all but one (while preserving any corrections
or new features that may have been introduced) is the best course. If two files serve genuinely different purposes
but almost all of their lines are the same, that can be a sign that there is a missing level of abstraction. Can some
of the shared code be extracted into methods (perhaps with additional parameters, to cover the differences in
behavior)? Should it be moved into a utility class or file that is accessible to all current implementations, or should
a new level of abstraction be introduced?

References

E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Proceedings of the 31stDo code clones matter?
International Conference on Software Engineering, 485-495, 2009.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 159

Encapsulation (1)

Avoid creating classes that lack cohesion
Avoid creating subclasses that have a high specialization index
Avoid exposing an object's internal representation

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 160

Avoid creating classes that lack cohesion

Category: > Important Encapsulation (1)

Description: A class that lacks cohesion probably has multiple responsibilities. The lack of cohesion
measure (LCOM) should be less than 3000.

A cohesive class is one in which most methods access the same fields. A class that lacks cohesion is usually one
that has multiple responsibilities.

Various measures of lack of cohesion have been proposed. The Chidamber and Kemerer version of lack of
cohesion inspects pairs of methods. If there are many pairs that access the same data, the class is cohesive. If
there are many pairs that do not access any common data, the class is not cohesive. More precisely, if:

n1 is the number of pairs of distinct methods in a class that at least one commonly-accesseddo not have
field, and
n2 is the number of pairs of distinct methods in a class that at least one commonly-accessed field,do have

the lack of cohesion measure (LCOM) can be defined as:

LCOM = max((n1 - n2) / 2, 0)

High values of LCOM indicate a significant lack of cohesion. As a rough indication, an LCOM of 500 or more may
give you cause for concern.

Recommendation

Classes generally lack cohesion because they have more responsibilities than they should (see [Martin]). In
general, the solution is to identify each of the different responsibilities that the class has, and split them into
multiple classes, using the 'Extract Class' refactoring from [Fowler], for example.

References

S. R. Chidamber and C. F. Kemerer, . IEEE Transactions onA metrics suite for object-oriented design
Software Engineering, 20(6):476-493, 1994.
M. Fowler, , pp. 65, 122-5. Addison-Wesley, 1999.Refactoring
R. Martin, . Published online.The Single Responsibility Principle
O. de Moor et al, . Proceedings of the 7th IEEEKeynote Address: .QL for Source Code Analysis
International Working Conference on Source Code Analysis and Manipulation, 2007.

http://www.objectmentor.com/resources/articles/srp.pdf

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 161

1.
2.
3.

Avoid creating subclasses that have a high specialization index

Category: > Important Encapsulation (1)

Description: A class that overrides much of the behavior of its ancestor classes indicates that the
abstractions in the ancestor classes should be reviewed. The specialization index should be less than 4.

Specialization index is the extent to which a subclass overrides the behavior of its ancestor classes. It is
computed as follows:

Determine the number of overridden methods in the subclass (not counting overrides of abstract methods).
Multiply this number by the subclass's depth in the inheritance hierarchy.
Divide the result by the subclass's total number of methods.

If a class overrides many of the methods of its ancestor classes, it indicates that the abstractions in the ancestor
classes should be reviewed. This is particularly true for subclasses that are lower down in the inheritance
hierarchy. In general, subclasses should behavior to their superclasses, rather than the behavioradd redefining
that is already there.

Recommendation

The most common reason that classes have a high specialization index is that multiple subclasses specialize a
common base class in the same way. In this case, the relevant method(s) should be pulled up into the base class
(see the 'Pull Up Method' refactoring in [Fowler]).

Example

In the following example, duplicating in each of the subclasses is unnecessary.getName

1 abstract class Animal {
 2 protected String animalName;

3
 4 public Animal(String name) {
 5 animalName = name;
 6 }

7
 8 public String getName(){
 9 return animalName;
 10 }
 11 public abstract String getKind();

12 }
13
14 class Dog extends Animal {

 15 public Dog(String name) {
 16 super(name);
 17 }

18
 19 public String getName() { // This method duplicates the method in class 'Cat'.
 20 return animalName + " the " + getKind();
 21 }

22
 23 public String getKind() {
 24 return "dog";
 25 }
 26 }

27
28 class Cat extends Animal {

 29 public Cat(String name) {
 30 super(name);

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 162

 31 }
32

 33 public String getName() { // This method duplicates the method in class 'Dog'.
 34 return animalName + " the " + getKind();
 35 }

36
 37 public String getKind() {
 38 return "cat";
 39 }

40 }

To decrease the specialization index of the subclasses, pull up into the base class.getName

1 abstract class Animal {
 2 private String animalName;

3
 4 public Animal(String name) {
 5 animalName = name;
 6 }

7
 8 public String getName() { // Method has been pulled up into the base class.
 9 return animalName + " the " + getKind();
 10 }

11
 12 public abstract String getKind();

13 }
14
15 class Dog extends Animal {

 16 public Dog(String name) {
 17 super(name);
 18 }

19
 20 public String getKind() {
 21 return "dog";
 22 }

23 }
24
25 class Cat extends Animal {

 26 public Cat(String name) {
 27 super(name);
 28 }

29
 30 public String getKind() {
 31 return "cat";
 32 }

33 }

References

M. Fowler, , pp. 260-3. Addison-Wesley, 1999.Refactoring
M. Lorenz and J. Kidd, . Prentice Hall, 1994.Object-oriented Software Metrics
O. de Moor et al, . Proceedings of the 7th IEEEKeynote Address: .QL for Source Code Analysis
International Working Conference on Source Code Analysis and Manipulation, 2007.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 163

Avoid exposing an object's internal representation

Category: > Important Encapsulation (1)

Description: An object that accidentally exposes its internal representation may allow the object's fields to
be modified in ways that the object is not prepared to handle.

A subtle type of defect is caused when an object accidentally exposes its internal representation to the code
outside the object, and the internal representation is then (deliberately or accidentally) modified in ways that the
object is not prepared to handle. Most commonly, this happens when a getter returns a direct reference to a
mutable field within the object, or a setter just assigns a mutable argument to its field.

Recommendation

There are three ways of addressing this problem:

Using immutable objects : The fields store objects that are , which means that onceimmutable
constructed their value can never be changed. Examples from the standard library are , or String Integer

. Although such an object may be aliased, or shared between several contexts, there can be noFloat

unexpected changes to the internal state of the object because it cannot be modified.
Creating a read-only view : The methods can be used to create ajava.util.Collections.unmodifiable*

read-only view of a collection without copying it. This tends to give better performance than creating copies
of objects. Note that this technique is not suitable for every situation, because any changes to the
underlying collection will spread to affect the view. This can lead to unexpected results, and is a particular
danger when writing multi-threaded code.
Making defensive copies : Each setter (or constructor) makes a copy or clone of the incoming parameter.
In this way, it constructs an instance known only internally, and no matter what happens with the object
that was passed in, the state stays consistent. Conversely, each getter for a field must also construct a
copy of the field's value to return.

Example

In the following example, the private field is returned directly by the getter . Thus, a caller obtains aitems getItems

reference to internal object state and can manipulate the collection of items in the cart. In the example, each of
the carts is emptied when is called.countItems

1 public class Cart {
 2 private Set<Item> items;
 3 // ...
 4 // AVOID: Exposes representation
 5 public Set<Item> getItems() {
 6 return items;
 7 }

8 }
9
10 int countItems(Set<Cart> carts) {

 11 int result = 0;
 12 for (Cart cart : carts) {
 13 Set<Item> items = cart.getItems();
 14 result += items.size();
 15 items.clear(); // AVOID: Changes internal representation
 16 }
 17 return result;

18 }

The solution is for to return a of the actual field, for example .getItems copy return new HashSet<Item>(items);

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 164

References

J. Bloch, , Items 15 and 39. Addison-Wesley, 2008.Effective Java (second edition)
Java 7 API Documentation: .Collections

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 165

Equality (1)

Avoid unintentionally overloading 'Comparable.compareTo'
Redefine 'equals' in subclasses that have additional fields

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 166

Avoid unintentionally overloading 'Comparable.compareTo'

Category: > Important Equality (1)

Description: Defining 'Comparable.compareTo', where the parameter of 'compareTo' is not of the
appropriate type, overloads 'compareTo' instead of overriding it.

Classes that implement and define a method whose parameter type is not Comparable<T> compareTo T overload
the method instead of it. This may not be intended.compareTo overriding

Example

In the following example, the call to on line 17 calls the method defined in class , instead of thecompareTo Super

method defined in class , because the type of and is . This may not be the method that theSub a b Super

programmer intended.

1 public class CovariantCompareTo {
 2 static class Super implements Comparable<Super> {
 3 public int compareTo(Super rhs) {
 4 return -1;
 5 }
 6 }
 7
 8 static class Sub extends Super {
 9 public int compareTo(Sub rhs) { // Definition of compareTo uses a different parameter type
 10 return 0;
 11 }
 12 }
 13
 14 public static void main(String[] args) {
 15 Super a = new Sub();
 16 Super b = new Sub();
 17 System.out.println(a.compareTo(b));
 18 }

19 }

Recommendation

To the method, the parameter of must have type .override Comparable<T>.compareTo compareTo T

In the example above, this means that the type of the parameter of should be changed to .Sub.compareTo Super

References

J. Bloch, , Item 12. Addison-Wesley, 2008.Effective Java (second edition)
The Java Language Specification: , .Overriding (by Instance Methods) Overloading
The Java Tutorials: .Overriding and Hiding Methods

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9
http://docs.oracle.com/javase/tutorial/java/IandI/override.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 167

Redefine 'equals' in subclasses that have additional fields

Category: > Important Equality (1)

Description: If a class overrides 'Object.equals', and a subclass defines additional fields to those it inherits
but does not re-define 'equals', the results of 'equals' may be wrong.

If a class overrides the default implementation of equality defined by the method, and a subclass ofObject.equals

that class declares additional fields to the ones that it inherits, the results of may be wrong, unless thatequals

subclass also redefines .equals

Recommendation

See if the subclass should provide its own implementation of to take into account the additional fields thatequals

it declares.

Example

In the following example, rectangles and are calculated to be equal, even though they have differentr1 r2

dimensions. This is because the class does not override , so it uses a test for equalityRectangle Square.equals

that is only applicable to squares, not rectangles. (Note that, in practice, the example should also include an
implementation of .)hashCode

1 public class DefineEqualsWhenAddingFields {
 2 static class Square {
 3 protected int width = 0;
 4 public Square(int width) {
 5 this.width = width;
 6 }
 7 @Override
 8 public boolean equals(Object thatO) { // This method works only for squares.
 9 if(thatO != null && getClass() == thatO.getClass()) {
 10 Square that = (Square)thatO;
 11 return width == that.width;
 12 }
 13 return false;
 14 }
 15 }

16
 17 static class Rectangle extends Square {
 18 private int height = 0;
 19 public Rectangle(int width, int height) {
 20 super(width);
 21 this.height = height;
 22 }
 23 }

24
 25 public static void main(String[] args) {
 26 Rectangle r1 = new Rectangle(4, 3);
 27 Rectangle r2 = new Rectangle(4, 5);
 28 System.out.println(r1.equals(r2)); // Outputs 'true'
 29 }

30 }

To get the correct result, you must override in class .Square.equals Rectangle

References

Java API Documentation: .Object.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 168

Exceptions (1)

Avoid dereferencing a variable that may be 'null'
Avoid unreachable 'catch' clauses
Do not drop an exception

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 169

Avoid dereferencing a variable that may be 'null'

Category: > Important Exceptions (1)

Description: Dereferencing a variable whose value may be 'null' may cause a 'NullPointerException'.

If a variable is dereferenced, and the variable may have a value on some execution paths leading to thenull

dereferencing, the dereferencing may result in a .NullPointerException

Recommendation

Ensure that the variable does not have a value when it is dereferenced.null

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 170

Avoid unreachable 'catch' clauses

Category: > Important Exceptions (1)

Description: An unreachable 'catch' clause may indicate a mistake in exception handling or may be
unnecessary.

An unreachable clause may indicate a logical mistake in the exception handling code or may simply becatch

unnecessary.

Although certain unreachable clauses cause a compiler error, there are also unreachable clausescatch catch

that do not cause a compiler error. A clause is considered reachable by the compiler if both of thecatch C

following conditions are true:

A checked exception that is thrown in the block is assignable to the parameter of .try C

There is no previous clause whose parameter type is equal to, or a supertype of, the parameter typecatch

of .C

However, a clause that is considered reachable by the compiler can be unreachable if both of the followingcatch

conditions are true:

The clause's parameter type does not include any unchecked exceptions.catch E

All exceptions that are thrown in the block whose type is a (strict) subtype of are already handled bytry E

previous clauses.catch

Recommendation

Ensure that unreachable clauses are removed or that further corrections are made to make themcatch

reachable.

Note that if a statement contains multiple clauses, and an exception that is thrown in the try-catch catch try

block matches more than one of the clauses, only the first matching clause is executed.catch

Example

In the following example, the second clause is unreachable, and can be removed.catch

1 FileInputStream fis = null;
2 try {

 3 fis = new FileInputStream(new File("may_not_exist.txt"));
 4 // read from input stream

5 } catch (FileNotFoundException e) {
 6 // ask the user and try again

7 } catch (IOException e) {
 8 // more serious, abort

9 } finally {
 10 if (fis!=null) { try { fis.close(); } catch (IOException e) { /*ignore*/ } }

11 }

References

The Java Language Specification: , .Execution of try-catch Unreachable Statements
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.20.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.21
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 171

Do not drop an exception

Category: > Important Exceptions (1)

Description: Dropping an exception may allow an unusual program state to continue without recovery.

You should not drop an exception, because it indicates that an unusual program state has been reached. This
usually requires corrective actions to be performed to recover from the exceptional state and try to resume
normal program operation.

Recommendation

You should do one of the following:

Catch and handle the exception.
Throw the exception to the outermost level of nesting.

Note that usually you should catch and handle a checked exception, but you can throw an unchecked exception
to the outermost level.

There is occasionally a valid reason for ignoring an exception. In such cases, you should document the reason to
improve the readability of the code. Alternatively, you can implement a static method with an empty body to
handle these exceptions. Instead of dropping the exception altogether, you can then pass it to the static method
with a string explaining the reason for ignoring it.

Examples

The following example shows a dropped exception.

1 // Dropped exception, with no information on whether
2 // the exception is expected or not
3 synchronized void waitIfAutoSyncScheduled() {

 4 try {
 5 while (isAutoSyncScheduled) {
 6 this.wait(1000);
 7 }
 8 } catch (InterruptedException e) {
 9 }

10 }

The following example shows how you can improve code readability by defining a new utility method.

1 // 'ignore' method. This method does nothing, but can be called
2 // to document the reason why the exception can be ignored.
3 public static void ignore(Throwable e, String message) {
4
5 }

The following example shows the exception being passed to with a comment.ignore

1 // Exception is passed to 'ignore' method with a comment
2 synchronized void waitIfAutoSyncScheduled() {

 3 try {
 4 while (isAutoSyncScheduled) {
 5 this.wait(1000);
 6 }
 7 } catch (InterruptedException e) {
 8 Exceptions.ignore(e, "Expected exception. The file cannot be synchronized yet.");
 9 }

10 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 172

References

J. Bloch, , Item 65. Addison-Wesley, 2008.Effective Java (second edition)
The Java Tutorials: .Unchecked Exceptions - The Controversy

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 173

Expressions (1)

Avoid assignments in Boolean expressions
Avoid very complex conditions

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 174

Avoid assignments in Boolean expressions

Category: > Important Expressions (1)

Description: Assignments in Boolean conditions can be confused with equality tests and make the
condition more difficult to understand.

The assignment operator () can easily be confused with the equality operator (), and can make a Boolean= ==

expression more difficult to understand. Consequently, assignments in Boolean expressions should be avoided.

Some useful idioms are an exception to this rule, such as checking that some bytes have been read from an
input-stream, as shown in the method in the example below. More precisely, an assignment isreadConfiguration

allowed in a Boolean expression if the result of the assignment is compared to another value.

Recommendation

Consider structuring the condition so that the side-effects are moved outside of the condition, possibly splitting
the condition into several separate tests.

Example

In the following example, consider the rather confusing assignment to in the method. Therestart notify

assignment should be performed outside of the condition instead.

1 public class ScreenView
2 {

 3 private static int BUF_SIZE = 1024;
 4 private Screen screen;

5
 6 public void notify(Change change) {
 7 boolean restart = false;
 8 if (change.equals(Change.MOVE)
 9 || v.equals(Change.REPAINT)
 10 || (restart = v.equals(Change.RESTART)) // AVOID: Confusing assignment in condition
 11 || v.equals(Change.FLIP))
 12 {
 13 if (restart)
 14 WindowManager.restart();
 15 screen.update();
 16 }
 17 }

18
 19 // ...

20
 21 public void readConfiguration(InputStream config) {
 22 byte[] buf = new byte[BUF_SIZE];
 23 int read;
 24 while ((read = config.read(buf)) > 0) { // OK: Assignment whose result is compared to
 25 // another value
 26 // ...
 27 }
 28 // ...
 29 }

30 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , .15.21 Equality Operators 15.26 Assignment Operators

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.21
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 175

Avoid very complex conditions

Category: > Important Expressions (1)

Description: Very complex conditions are difficult to read and may include defects.

In general, very complex conditions are difficult to write and read, and increase the chance of defects.

Recommendation

Firstly, a condition can often be simplified by changing other parts of the code to initialize variables more
consistently. For example, is there a semantic difference between being and having zero-length? If not,id null

choosing one sentinel value and using it consistently simplifies most uses of that variable.

Secondly, extracting part of a condition into a Boolean-valued method can simplify the condition and also allow
code reuse, with all its benefits.

Thirdly, assigning each subcondition of the condition to a local variable, and then using the variables in the
condition instead can simplify the condition.

Example

The following example shows a complex condition found in a real program used by millions of people. The
condition is so confusing that even the programmer who wrote it is not sure if he got it right (see the TODO
comment).

1 public class Dialog
2 {

 3 // ...
4

 5 private void validate() {
 6 // TODO: check that this covers all cases
 7 if ((id != null && id.length() == 0) ||
 8 ((partner == null || partner.id == -1) &&
 9 ((option == Options.SHORT && parameter.length() == 0) ||
 10 (option == Options.LONG && parameter.length() < 8))))
 11 {
 12 disableOKButton();
 13 } else {
 14 enableOKButton();
 15 }
 16 }

17
 18 // ...

19 }

The condition can be simplified by extracting parts of the condition into Boolean-valued methods. These methods
are then used in the condition.

1 public class Dialog
2 {

 3 // ...
4

 5 private void validate() {
 6 if(idIsEmpty() || (noPartnerId() && parameterLengthInvalid())){ // GOOD: Condition is simpler
 7 disableOKButton();
 8 } else {
 9 enableOKButton();
 10 }
 11 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 176

12
 13 private boolean idIsEmpty(){
 14 return id != null && id.length() == 0;
 15 }

16
 17 private boolean noPartnerId(){
 18 return partner == null || partner.id == -1;
 19 }

20
 21 private boolean parameterLengthInvalid(){
 22 return (option == Options.SHORT && parameter.length() == 0) ||
 23 (option == Options.LONG && parameter.length() < 8);
 24 }

25
 26 // ...

27 }

References

R. C. Martin, , §17.G28. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship
S. McConnell, . Microsoft Press, 2004.Code Complete: A Practical Handbook of Software Construction

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 177

Extensibility (1)

Avoid writing to a static field from an instance method

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 178

Avoid writing to a static field from an instance method

Category: > Important Extensibility (1)

Description: Writing to a static field from an instance method is prone to race conditions unless you use
synchronization. In addition, it makes it difficult to keep the static state consistent and affects code
readability.

A static field represents state shared between all instances of a particular class. Typically, static methods are
provided to manipulate this static state, and it is bad practice to modify the static state of a class from an instance
method (or from a constructor).

There are several reasons why this is bad practice. It can be very difficult to keep the static state consistent when
there are multiple instances through which it could be modified. Such modifications represent a readability issue:
most programmers would expect a static method to affect static state, and an instance method to affect instance
state.

Recommendation

If the field should be an instance field, ensure that it does not have a modifier.static

If the field does have to be static, evaluate the assumptions in the code. Does the field really have to be modified
directly in an instance method? It might be better to access the field from within static methods, so that any
concerns about synchronization can be addressed without numerous synchronization statements in the code.
Perhaps the field modification is part of the static initialization of the class, and should be moved to a static
initializer or method.

Example

In the following example, a static field, , is written to by an instance method, . It is entirelycustomers initialize

reasonable for another developer to assume that an instance method called should be called on eachinitialize

new instance, and that is what the code in does. Unfortunately, the static field is shared between allDepartment

instances of , and so each time is called, the old state is lost.Customer initialize

1 public class Customer {
 2 private static List<Customer> customers;
 3 public void initialize() {
 4 // AVOID: Static field is written to by instance method.
 5 customers = new ArrayList<Customer>();
 6 register();
 7 }
 8 public static void add(Customer c) {
 9 customers.add(c);
 10 }

11 }
12
13 // ...
14 public class Department {

 15 public void addCustomer(String name) {
 16 Customer c = new Customer(n);
 17 // The following call overwrites the list of customers
 18 // stored in 'Customer' (see above).
 19 c.initialize();
 20 Customer.add(c);
 21 }

22 }

The solution is to extract the static initialization of to a static method, where it will happen exactly once.customers

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 179

References

Java Language Specification: .8.3.1.1 static Fields

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1.1

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 180

Incomplete Code (1)

Do not include empty 'finalize' methods
Ensure that 'TODO' or 'FIXME' comments are resolved
Ensure that 'ZipOutputStream.write' is called when writing a ZIP file

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 181

Do not include empty 'finalize' methods

Category: > Important Incomplete Code (1)

Description: An empty 'finalize' method is useless and prevents its superclass's 'finalize' method (if any)
from being called.

An empty method is useless and may prevent finalization from working properly. This is because, unlikefinalize

a constructor, a finalizer does not implicitly call the finalizer of the superclass. Thus, an empty finalizer prevents
any finalization logic that is defined in any of its superclasses from being executed.

Recommendation

Do not include an empty method.finalize

Example

In the following example, the empty method in class prevents the method in class finalize ExtendedLog finalize

 from being called. The result is that the log file is not closed. To fix this, remove the empty method.Log finalize

1 class ExtendedLog extends Log
2 {

 3 // ...
4

 5 protected void finalize() {
 6 // BAD: This empty 'finalize' stops 'super.finalize' from being executed.
 7 }

8 }
9
10 class Log implements Closeable
11 {

 12 // ...
13

 14 public void close() {
 15 // ...
 16 }

17
 18 protected void finalize() {
 19 close();
 20 }

21 }

References

Java Language Specification: .12.6 Finalization of Class Instances

http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.6

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 182

Ensure that 'TODO' or 'FIXME' comments are resolved

Category: > Important Incomplete Code (1)

Description: A comment that contains 'TODO' or 'FIXME' may indicate code that is incomplete or broken,
or highlight an ambiguity in the software's specification.

A comment that includes the word or often marks a part of the code that is incomplete or broken, orTODO FIXME

highlights ambiguities in the software's specification.

For example, this list of comments is typical of those found in real programs:

TODO: move this code somewhere else

FIXME: handle this case

FIXME: find a better solution to this workaround

TODO: test this

Recommendation

It is very important that or comments are not just removed from the code. Each of them must beTODO FIXME

addressed in some way.

Simpler comments can usually be immediately addressed by fixing the code, adding a test, doing some
refactoring, or clarifying the intended behavior of a feature.

In contrast, larger issues may require discussion, and a significant amount of work to address. In these cases it is
a good idea to move the comment to an issue-tracking system, so that the issue can be tracked and prioritized
relative to other defects and feature requests.

References

Approxion: .TODO or not TODO
Wikipedia: , .Comment tags Issue tracking system

http://www.approxion.com/?p=39
http://en.wikipedia.org/wiki/Comment_%28computer_programming%29#Tags
http://en.wikipedia.org/wiki/Issue_tracking_system

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 183

Ensure that 'ZipOutputStream.write' is called when writing a ZIP file

Category: > Important Incomplete Code (1)

Description: Omitting a call to 'ZipOutputStream.write' when writing a ZIP file to an output stream means
that an empty ZIP file entry is written.

The class is used to write ZIP files to a file or other stream. A ZIP file consists of a number of ZipOutputStream

. Usually each entry corresponds to a file in the directory structure being zipped. There is a method on entries
 that is slightly confusingly named . Despite its name, it does not write a whole entry.ZipOutputStream putNextEntry

Instead, it writes the for an entry. The content for that entry is then written using the method.metadata write

Finally the entry is closed using .closeEntry

Therefore, if you call and but omit the call to , an empty ZIP file entry is written toputNextEntry closeEntry write

the output stream.

Recommendation

Ensure that you include a call to .ZipOutputStream.write

Example

In the following example, the method calls and but the call to is left out.archive putNextEntry closeEntry write

1 class Archive implements Closeable
2 {

 3 private ZipOutputStream zipStream;
4

 5 public Archive(File zip) throws IOException {
 6 OutputStream stream = new FileOutputStream(zip);
 7 stream = new BufferedOutputStream(stream);
 8 zipStream = new ZipOutputStream(stream);
 9 }

10
 11 public void archive(String name, byte[] content) throws IOException {
 12 ZipEntry entry = new ZipEntry(name);
 13 zipStream.putNextEntry(entry);
 14 // Missing call to 'write'
 15 zipStream.closeEntry();
 16 }

17
 18 public void close() throws IOException {
 19 zipStream.close();
 20 }

21 }

References

Java 2 Platform Standard Edition 5.0, API Specification: .ZipOutputStream

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/zip/ZipOutputStream.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 184

Inefficient Code

Avoid calling 'Collection.toArray' with a zero-length array argument
Avoid calling a boxed type's constructor directly
Avoid checking a string for equality with an empty string
Avoid iterating through a map using its key set
Avoid non-static nested classes unless necessary
Avoid performing string concatenation in a loop
Avoid using the 'String(String)' constructor

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 185

Avoid calling 'Collection.toArray' with a zero-length array argument

Category: > Important Inefficient Code

Description: Calling 'Collection.toArray' with a zero-length array argument is inefficient.

The interface provides a method that can be used to convert a collection of objectsjava.util.Collection toArray

into an array of a particular type. This method takes an array as an argument, which is used for two purposes.
Firstly, it determines the type of the returned array. Secondly, if it is big enough to hold all values in the collection,
it is filled with those values and returned; otherwise, a new array of sufficient size and the appropriate type is
allocated and filled.

It is common to pass a fresh zero-length array to , simply because it is easy to construct one.toArray

Unfortunately, this allocation is wasteful, because the array clearly is not big enough to hold the elements of the
collection. This can cause considerable garbage collector churn, impacting performance.

Recommendation

It is always best to call with a new array allocated with a sufficient size to hold the contents of thetoArray

collection. Usually, this involves calling the collection's method and allocating an array with that manysize

elements. While it may seem odd that adding a call to improves performance, if you do not pass a largesize

enough array, the method makes this call automatically. Calling explicitly and then calling toArray size toArray

with a large enough array avoids the possible creation of two arrays (one too small and consequently unused).

Example

In the following example, the first version of class uses an inefficient call to by passing aCompany toArray

zero-length array. The second version uses a more efficient call that passes an array that is big enough to store
the customer list.

1 class Company {
 2 private List<Customer> customers = ...;
 3
 4 public Customer[] getCustomerArray() {
 5 // AVOID: Inefficient call to 'toArray' with zero-length argument
 6 return customers.toArray(new Customer[0]);
 7 }

8 }
9
10 class Company {

 11 private List<Customer> customers = ...;
 12
 13 public Customer[] getCustomerArray() {
 14 // GOOD: More efficient call to 'toArray' with argument that is big enough to store the list
 15 return customers.toArray(new Customer[customers.size()]);
 16 }

17 }

References

Java Platform, Standard Edition 6, API Specification: .toArray

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 186

Avoid calling a boxed type's constructor directly

Category: > Important Inefficient Code

Description: Calling the constructor of a boxed type is inefficient.

Primitive values (for example , ,) all have corresponding reference types known as int float boolean boxed types
(for example , ,). These boxed types can be used when an actual object is required. WhileInteger Float Boolean

they all provide constructors that take a primitive value of the appropriate type, it is usually considered bad
practice to call those constructors directly.

Each boxed type provides a static method that takes an argument of the appropriate primitive type andvalueOf

returns an object representing it. The advantage of calling over calling a constructor is that it allows forvalueOf

some caching of instances. By reusing these cached instances instead of constructing new heap objects all the
time, a significant amount of garbage collector effort can be saved.

Recommendation

In almost all circumstances, a call of, for example, can be used instead of .Integer.valueOf(42) new Integer(42)

Note that sometimes you can rely on Java's feature, which implicitly calls . For details, see theautoboxing valueOf

example.

Example

The following example shows the three ways of creating a new integer. In the autoboxing example, the zero is
autoboxed to an because the constructor takes an argument of this type.Integer Account

1 public class Account {
 2 private Integer balance;
 3 public Account(Integer startingBalance) {
 4 this.balance = startingBalance;
 5 }

6 }
7
8 public class BankManager {

 9 public void openAccount(Customer c) {
 10 ...
 11 // AVOID: Inefficient primitive constructor
 12 accounts.add(new Account(new Integer(0)));
 13 // GOOD: Use 'valueOf'
 14 accounts.add(new Account(Integer.valueOf(0)));
 15 // GOOD: Rely on autoboxing
 16 accounts.add(new Account(0));
 17 }

18 }

References

J. Bloch, , Items 1 and 5. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Documentation: , , Boolean.valueOf() Byte.valueOf() Short.valueOf()
, , , , .Integer.valueOf() Long.valueOf() Float.valueOf() Double.valueOf()

http://docs.oracle.com/javase/6/docs/api/java/lang/Boolean.html#valueOf%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Byte.html#valueOf%28byte%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Short.html#valueOf%28short%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#valueOf%28int%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html#valueOf%28long%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Float.html#valueOf%28float%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#valueOf%28double%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 187

Avoid checking a string for equality with an empty string

Category: > Important Inefficient Code

Description: Checking a string for equality with an empty string is inefficient.

When checking whether a string is empty, perhaps the most obvious solution is to write something like s

 (or). However, this actually carries a fairly significant overhead, because s.equals("") "".equals(s)

 performs a number of type tests and conversions before starting to compare the content of theString.equals

strings.

Recommendation

The preferred way of checking whether a string is empty is to check if its length is equal to zero. Thus, thes

condition is . The method is implemented as a simple field access, and so should bes.length() == 0 length

noticeably faster than calling .equals

Note that in Java 6 and later, the class has an method that checks whether a string is empty. If theString isEmpty

codebase does not need to support Java 5, it may be better to use that method instead.

Example

In the following example, class uses to test whether the strings and areInefficientDBClient equals user pw

empty. Note that the test guards against , but the test "".equals(pw) NullPointerException user.equals("")

throws a if is .NullPointerException user null

In contrast, the class uses instead of . The class preserves the behavior of EfficientDBClient length equals

 by guarding but not with an explicit test for .InefficientDBClient pw.length() == 0 user.length() == 0 null

Whether or not this guard is desirable depends on the intended behavior of the program.

1 // Inefficient version
2 class InefficientDBClient {

 3 public void connect(String user, String pw) {
 4 if (user.equals("") || "".equals(pw))
 5 throw new RuntimeException();
 6 ...
 7 }

8 }
9
10 // More efficient version
11 class EfficientDBClient {

 12 public void connect(String user, String pw) {
 13 if (user.length() == 0 || (pw != null && pw.length() == 0))
 14 throw new RuntimeException();
 15 ...
 16 }

17 }

References

Java Platform, Standard Edition 6, API Specification: , .String.length() String.equals()

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#equals%28java.lang.Object%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 188

Avoid iterating through a map using its key set

Category: > Important Inefficient Code

Description: Iterating through the values of a map using the key set is inefficient.

Java's Collections Framework provides several different ways of iterating the contents of a map. You can retrieve
the set of keys, the collection of values, or the set of "entries" (which are, in effect, key/value pairs).

The choice of iterator can affect performance. For example, it is considered bad practice to iterate the key set of a
map if the body of the loop performs a map lookup on each retrieved key anyway.

Recommendation

Evaluate the requirements of the loop body. If it does not actually need the key apart from looking it up in the
map, iterate the map's values (obtained by a call to) instead. If the loop genuinely needs both key andvalues

value for each mapping in the map, iterate the entry set (obtained by a call to) and retrieve the key andentrySet

value from each entry. This saves a more expensive map lookup each time.

Example

In the following example, the first version of the method iterates the map using the key set. This isfindId people

inefficient because the body of the loop needs to access the value for each key. In contrast, the second version
iterates the map using the entry set because the loop body needs both the key and the value for each mapping.

1 // AVOID: Iterate the map using the key set.
2 class AddressBook {

 3 private Map<String, Person> people = ...;
 4 public String findId(String first, String last) {
 5 for (String id : people.keySet()) {
 6 Person p = people.get(id);
 7 if (first.equals(p.firstName()) && last.equals(p.lastName()))
 8 return id;
 9 }
 10 return null;
 11 }

12 }
13
14 // GOOD: Iterate the map using the entry set.
15 class AddressBook {

 16 private Map<String, Person> people = ...;
 17 public String findId(String first, String last) {
 18 for (Entry<String, Person> entry: people.entrySet()) {
 19 Person p = entry.getValue();
 20 if (first.equals(p.firstName()) && last.equals(p.lastName()))
 21 return entry.getKey();
 22 }
 23 return null;
 24 }

25 }

References

Java Platform, Standard Edition 6, API Specification: .Map.entrySet()

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html#entrySet%28%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 189

Avoid non-static nested classes unless necessary

Category: > Important Inefficient Code

Description: A non-static nested class keeps a reference to the enclosing object, which makes the nested
class bigger and may cause a memory leak.

Nested classes allow logical grouping of related concerns, increasing encapsulation and readability. However,
there is a potential disadvantage when using them that you should be aware of.

Any non-static nested class implicitly holds onto its "enclosing instance". This means that:

The nested class has an implicitly defined field. The field holds a reference to the instance of the enclosing
class that constructed the nested class.
The nested class's constructors have an implicit parameter. The parameter is used for passing in the
instance of the enclosing class. A reference to the instance is then stored in the field mentioned above.

Often, this is useful and necessary, because non-static nested class instances have access to instance state on
their enclosing classes. However, if this instance state is not needed by the nested class, this makes nested class
instances larger than necessary, and hidden references to the enclosing classes are often the source of subtle
memory leaks.

Recommendation

When a nested class does not need the enclosing instance, it is better to declare the nested class ,static

avoiding the implicit field. As a result, instances of the nested class become smaller, and hidden references to the
enclosing class are made explicit.

If a reference to the enclosing class instance is required during construction of the nested class instance (but not
subsequently), the constructor of the nested class should be refactored so that it is explicitly given a reference to
the enclosing instance.

References

J. Bloch, , Item 22. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .8.1.3. Inner Classes and Enclosing Instances
The Java Tutorials: .Nested Classes

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.3
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 190

Avoid performing string concatenation in a loop

Category: > Important Inefficient Code

Description: Performing string concatenation in a loop that iterates many times may affect performance.

When string concatenation is performed using the "+" operator, the compiler translates this operation to a suitable
manipulation, possibly constructing several intermediate strings. In general, because strings are immutable, at
least one new string has to be constructed to hold the result.

Building up a string one piece at a time in a loop requires a new string on every iteration, repeatedly copying
longer and longer prefixes to fresh string objects. As a result, performance can be severely degraded.

Recommendation

Whenever a string is constructed using a loop that iterates more than just a few times, it is usually better to create
a or object and append to that. Because such buffers are based on mutableStringBuffer StringBuilder

character arrays, which do not require a new string to be created for each concatenation, they can reduce the
cost of repeatedly growing the string.

To choose between and , check if the new buffer object can possibly be accessed byStringBuffer StringBuilder

several different threads while in use. If multi-thread safety is required, use a . For purely local stringStringBuffer

buffers, you can avoid the overhead of synchronization by using a .StringBuilder

Example

The following example shows a simple test that measures the time taken to construct a string. It constructs the
same string of 65,536 binary digits, character-by-character, first by repeatedly appending to a string, and then by
using a . The second method is three orders of magnitude faster.StringBuilder

1 public class ConcatenationInLoops {
 2 public static void main(String[] args) {
 3 Random r = new Random(123);
 4 long start = System.currentTimeMillis();
 5 String s = "";
 6 for (int i = 0; i < 65536; i++)
 7 s += r.nextInt(2);
 8 System.out.println(System.currentTimeMillis() - start); // This prints roughly 4500.

9
 10 r = new Random(123);
 11 start = System.currentTimeMillis();
 12 StringBuilder sb = new StringBuilder();
 13 for (int i = 0; i < 65536; i++)
 14 sb.append(r.nextInt(2));
 15 s = sb.toString();
 16 System.out.println(System.currentTimeMillis() - start); // This prints 5.
 17 }

18 }

References

J. Bloch, , Item 51. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Specification: , .StringBuffer StringBuilder

http://docs.oracle.com/javase/6/docs/api/java/lang/StringBuffer.html
http://docs.oracle.com/javase/6/docs/api/java/lang/StringBuilder.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 191

Avoid using the 'String(String)' constructor

Category: > Important Inefficient Code

Description: Using the 'String(String)' constructor is less memory efficient than using the constructor
argument directly.

The class is immutable, which means that there is no way to change the string that it represents.String

Consequently, there is rarely a need to copy a object or construct a new instance based on an existingString

string, for example by writing something like . Furthermore, this practice isString hello = new String("hello")

not memory efficient.

Recommendation

The copied string is functionally indistinguishable from the argument that was passed into the constructor,String

so you can simply omit the constructor call and use the argument passed into it directly. Unless an explicit copy
of the argument string is needed, this is a safe transformation.

Example

The following example shows three cases of copying a string using the constructor, which is inefficient. InString

each case, simply removing the constructor call and leaving the argument results in better code andnew String

less memory churn.

1 public void sayHello(String world) {
 2 // AVOID: Inefficient 'String' constructor
 3 String message = new String("hello ");

4
 5 // AVOID: Inefficient 'String' constructor
 6 message = new String(message + world);

7
 8 // AVOID: Inefficient 'String' constructor
 9 System.out.println(new String(message));

10 }

References

J. Bloch, , Item 5. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Specification: .String(String)

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#String%28java.lang.String%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 192

Java objects (2)

Cloning (1)
Garbage collection (1)
Serialization (1)

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 193

Cloning (1)

Ensure that a class that implements 'Cloneable' overrides 'clone'

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 194

Ensure that a class that implements 'Cloneable' overrides 'clone'

Category: > > Important Java objects (2) Cloning (1)

Description: A class that implements 'Cloneable' but does not override the 'clone' method will have
undesired behavior.

A class that implements should override . For non-trivial objects, the contractCloneable Object.clone Cloneable

requires a deep copy of the object's internal state. A class that does not have a method indicates that theclone

class is breaking the contract and will have undesired behavior.

The Java API documentation states that, for an object , the general intent of the method is for it to satisfyx clone

the following three properties:

x.clone() != x (the cloned object is a different object instance)
x.clone().getClass() == x.getClass() (the cloned object is the same type as the source object)
x.clone().equals(x) (the cloned object has the same 'contents' as the source object)

For the cloned object to be of the same type as the source object, non-final classes must call andsuper.clone

that call must eventually reach , which creates an instance of the right type. If it were to create a newObject.clone

object using a constructor, a subclass that does not implement the method returns an object of the wrongclone

type. In addition, all of the class's supertypes that also override must call . Otherwise, it neverclone super.clone

reaches and creates an object of the incorrect type.Object.clone

However, as only does a shallow copy of the fields of an object, any objects that have aObject.clone Cloneable

"deep structure" (for example, objects that use an array or) must take the clone that results from theCollection

call to and assign explicitly created copies of the structure to the clone's fields. This means that thesuper.clone

cloned instance does not share its internal state with the source object. If it share its internal state, anydid
changes made in the cloned object would also affect the internal state of the source object, probably causing
unintended behavior.

One added complication is that cannot modify values in final fields, which would be already set by the callclone

to . Some fields must be made non-final to correctly implement the method.super.clone clone

Recommendation

The necessity of creating a deep copy of an object's internal state means that, for most objects, must beclone

overridden to satisfy the contract. Implement a method that properly creates the internal state ofCloneable clone

the cloned object.

Notable exceptions to this recommendation are:

Classes that contain only primitive types (which will be properly cloned by as long as its Object.clone

 supertypes all call).Cloneable super.clone

Subclasses of classes that do not introduce new state.Cloneable

Example

In the following example, does not implement . This means that when is cloned from WrongStack clone ws1clone

, the default implementation is used. This results in operations on the stack affecting the ws1 clone ws1clone ws1

stack.

1 abstract class AbstractStack implements Cloneable {
 2 public AbstractStack clone() {
 3 try {
 4 return (AbstractStack) super.clone();
 5 } catch (CloneNotSupportedException e) {

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 195

 6 throw new AssertionError("Should not happen");
 7 }
 8 }

9 }
10
11 class WrongStack extends AbstractStack {

 12 private static final int MAX_STACK = 10;
 13 int[] elements = new int[MAX_STACK];
 14 int top = -1;

15
 16 void push(int newInt) {
 17 elements[++top] = newInt;
 18 }
 19 int pop() {
 20 return elements[top--];
 21 }
 22 // BAD: No 'clone' method to create a copy of the elements.
 23 // Therefore, the default 'clone' implementation (shallow copy) is used, which
 24 // is equivalent to:
 25 //
 26 // public WrongStack clone() {
 27 // WrongStack cloned = (WrongStack) super.clone();
 28 // cloned.elements = elements; // Both 'this' and 'cloned' now use the same elements.
 29 // return cloned;
 30 // }

31 }
32
33 public class MissingMethodClone {

 34 public static void main(String[] args) {
 35 WrongStack ws1 = new WrongStack(); // ws1: {}
 36 ws1.push(1); // ws1: {1}
 37 ws1.push(2); // ws1: {1,2}
 38 WrongStack ws1clone = (WrongStack) ws1.clone(); // ws1clone: {1,2}
 39 ws1clone.pop(); // ws1clone: {1}
 40 ws1clone.push(3); // ws1clone: {1,3}
 41 System.out.println(ws1.pop()); // Because ws1 and ws1clone have the same
 42 // elements, this prints 3 instead of 2
 43 }

44 }

In the following modified example, implement . This means that when is clonedRightStack does clone rs1clone

from , operations on the stack do not affect the stack.rs1 rs1clone rs1

1 abstract class AbstractStack implements Cloneable {
 2 public AbstractStack clone() {
 3 try {
 4 return (AbstractStack) super.clone();
 5 } catch (CloneNotSupportedException e) {
 6 throw new AssertionError("Should not happen");
 7 }
 8 }

9 }
10
11 class RightStack extends AbstractStack {

 12 private static final int MAX_STACK = 10;
 13 int[] elements = new int[MAX_STACK];
 14 int top = -1;

15
 16 void push(int newInt) {
 17 elements[++top] = newInt;
 18 }
 19 int pop() {
 20 return elements[top--];
 21 }

22

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 196

 23 // GOOD: 'clone' method to create a copy of the elements.
 24 public RightStack clone() {
 25 RightStack cloned = (RightStack) super.clone();
 26 cloned.elements = elements.clone(); // 'cloned' has its own elements.
 27 return cloned;
 28 }

29 }
30
31 public class MissingMethodClone {

 32 public static void main(String[] args) {
 33 RightStack rs1 = new RightStack(); // rs1: {}
 34 rs1.push(1); // rs1: {1}
 35 rs1.push(2); // rs1: {1,2}
 36 RightStack rs1clone = rs1.clone(); // rs1clone: {1,2}
 37 rs1clone.pop(); // rs1clone: {1}
 38 rs1clone.push(3); // rs1clone: {1,3}
 39 System.out.println(rs1.pop()); // Correctly prints 2
 40 }

41 }

References

J. Bloch, , Item 11. Addison-Wesley, 2008.Effective Java (second edition)
Java 6 API Specification: .Object.clone()

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 197

Garbage collection (1)

Do not set fields to 'null' in a finalizer
Do not trigger garbage collection explicitly
Ensure that a 'finalize' method calls 'super.finalize'

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 198

Do not set fields to 'null' in a finalizer

Category: > > Important Java objects (2) Garbage collection (1)

Description: Setting fields to 'null' in a finalizer does not cause the object to be collected by the garbage
collector any earlier, and may adversely affect performance.

A finalizer does not need to set an object's fields to to help the garbage collector. At the point in the Javanull

object life-cycle when the method is called, the object is no longer reachable from the garbage collectionfinalize

roots. Explicitly setting the object's fields to does not cause the referenced objects to be collected by thenull

garbage collector any earlier, and may even adversely affect performance.

The life-cycle of a Java object has 7 stages:

 : Memory is allocated for the object and the initializers and constructors have been run.Created
 : The object is reachable through a chain of strong references from a garbage collection root. AIn use

garbage collection root is a special class of variable (which includes variables on the stack of any thread,
static variables of any class, and references from Java Native Interface code).

 : The object has already gone out of scope, but the stack frame of the method that contained theInvisible
scope is still in memory. Not all objects transition into this state.

 : The object is no longer reachable through a chain of strong references. It becomes aUnreachable
candidate for garbage collection.

 : The garbage collector has identified that the object can be deallocated. If it has a finalizer, it isCollected
marked for finalization. Otherwise, it is deallocated.

 : An object with a method transitions to this state after the finalize method is completedFinalized finalize

and the object still remains unreachable.
 : The object is a candidate for deallocation.Deallocated

The call to the method occurs when the object is in the 'Collected' stage. At that point, it is alreadyfinalize

unreachable from the garbage collection roots so any of its references to other objects no longer contribute to
their reference counts.

Recommendation

Ensure that the finalizer does not contain any assignments because they are unlikely to help garbagenull

collection.

If a finalizer does nothing but nullify an object's fields, it is best to completely remove the finalizer. Objects with
finalizers severely affect performance, and you should avoid defining where possible.finalize

Example

In the following example, unnecessarily assigns the object's fields to null.finalize

1 class FinalizedClass {
 2 Object o = new Object();
 3 String s = "abcdefg";
 4 Integer i = Integer.valueOf(2);
 5
 6 @Override
 7 protected void finalize() throws Throwable {
 8 super.finalize();
 9 //No need to nullify fields
 10 this.o = null;

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 199

 11 this.s = null;
 12 this.i = null;
 13 }

14 }

References

J. Bloch, , Item 7. Addison-Wesley, 2008.Effective Java (second edition)
IBM developerWorks: .Explicit nulling
Oracle Technology Network: .How to Handle Java Finalization's Memory-Retention Issues
S. Wilson and J. Kesselman, , Appendix A.Java Platform Performance: Strategies and Tactics, 1st ed.
Prentice Hall, 2001.

http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html#3.2
http://www.oracle.com/technetwork/articles/javase/finalization-137655.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 200

Do not trigger garbage collection explicitly

Category: > > Important Java objects (2) Garbage collection (1)

Description: Triggering garbage collection explicitly may either have no effect or may trigger unnecessary
garbage collection.

You should avoid making calls to explicit garbage collection methods (and). The calls areRuntime.gc System.gc

not guaranteed to trigger garbage collection, and they may also trigger unnecessary garbage collection passes
that lead to decreased performance.

Recommendation

It is better to let the Java Virtual Machine (JVM) handle garbage collection. If it becomes necessary to control
how the JVM handles memory, it is better to use the JVM's memory and garbage collection options (for example,

, ,) than to trigger garbage collection in the application.-Xmx -XX:NewRatio -XX:Use*GC

The memory management classes that are used by Real-Time Java are an exception to this rule, because they
are designed to handle garbage collection differently from the JVM default.

Example

The following example shows code that makes connection requests, and tries to trigger garbage collection after it
has processed each request.

1 class RequestHandler extends Thread {
 2 private boolean isRunning;
 3 private Connection conn = new Connection();
 4
 5 public void run() {
 6 while (isRunning) {
 7 Request req = conn.getRequest();
 8 // Process the request ...
 9
 10 System.gc(); // This call may cause a garbage collection after each request.
 11 // This will likely reduce the throughput of the RequestHandler
 12 // because the JVM spends time on unnecessary garbage collection passes.
 13 }
 14 }

15 }

It is better to remove the call to and rely on the JVM to dispose of the connection.System.gc

References

Java 6 API Documentation: .System.gc()
Oracle Technology Network: .Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#gc%28%29
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 201

Ensure that a 'finalize' method calls 'super.finalize'

Category: > > Important Java objects (2) Garbage collection (1)

Description: A 'finalize' method that does not call may leave cleanup actions undone.super.finalize

A method that overrides the finalizer of a superclass but does not call may leave systemfinalize super.finalize

resources undisposed of or cause other cleanup actions to be left undone.

Recommendation

Make sure that all methods call to ensure that the finalizer of its superclass is executed.finalize super.finalize

Finalizer chaining is not automatic in Java.

It is also possible to defend against subclasses that do not call by putting the cleanup code into a super.finalize

 instead of the method. A finalizer guardian is an anonymous object instance thatfinalizer guardian finalize

contains the cleanup code for the enclosing object in its method. The only reference to the finalizerfinalize

guardian is stored in a private field of the enclosing instance, which means that both the guardian and the
enclosing instance can be finalized at the same time. This way, a subclass cannot block the execution of the
cleanup code by not calling .super.finalize

Example

In the following example, does not call , which means that native resourcesWrongCache.finalize super.finalize

are not disposed of. However, call , which means that native resources RightCache.finalize does super.finalize

 disposed of.are

1 class LocalCache {
 2 private Collection<NativeResource> localResources;
 3
 4 //...
 5
 6 protected void finalize() throws Throwable {
 7 for (NativeResource r : localResources) {
 8 r.dispose();
 9 }
 10 };

11 }
12
13 class WrongCache extends LocalCache {

 14 //...
 15 @Override
 16 protected void finalize() throws Throwable {
 17 // BAD: Empty 'finalize', which does not call 'super.finalize'.
 18 // Native resources in LocalCache are not disposed of.
 19 }

20 }
21
22 class RightCache extends LocalCache {

 23 //...
 24 @Override
 25 protected void finalize() throws Throwable {
 26 // GOOD: 'finalize' calls 'super.finalize'.
 27 // Native resources in LocalCache are disposed of.
 28 super.finalize();
 29 }

30 }

The following example shows a finalizer guardian.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 202

1 class GuardedLocalCache {
 2 private Collection<NativeResource> localResources;
 3 // A finalizer guardian, which performs the finalize actions for 'GuardedLocalCache'
 4 // even if a subclass does not call 'super.finalize' in its 'finalize' method
 5 private Object finalizerGuardian = new Object() {
 6 protected void finalize() throws Throwable {
 7 for (NativeResource r : localResources) {
 8 r.dispose();
 9 }
 10 };
 11 };

12 }

References

Java 7 API Documentation: .Object.finalize()
J. Bloch, , Item 7. Addison-Wesley, 2008.Effective Java (second edition)

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#finalize%28%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 203

Serialization (1)

Do not use 'transient' in a non-serializable class
Ensure that 'readResolve' has the correct signature
Ensure that a class that implements 'Externalizable' has a public no-argument constructor
Ensure that each non-transient, non-static field in a serializable class is serializable
Ensure that the signatures of 'readObject' and 'writeObject' on a serializable class are correct

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 204

Do not use 'transient' in a non-serializable class

Category: > > Important Java objects (2) Serialization (1)

Description: Using the 'transient' field modifier in non-serializable classes has no effect.

The modifier is used to identify fields that are not part of the persistent state of the class. As such, ittransient

only has an effect if the class is serializable, and has no purpose in a non-serializable class.

A field that is marked in a non-serializable class is likely to be a leftover from a time when the classtransient

was serializable.

Recommendation

If the class is non-serializable, leave out the modifier. Otherwise, use the modifier, and ensure that thetransient

class (or a relevant supertype) implements .Serializable

Example

The following example shows two fields that are declared . The modifier only has an effect in the classtransient

that implements .Serializable

1 class State {
 2 // The 'transient' modifier has no effect here because
 3 // the 'State' class does not implement 'Serializable'.
 4 private transient int[] stateData;

5 }
6
7 class PersistentState implements Serializable {

 8 private int[] stateData;
 9 // The 'transient' modifier indicates that this field is not part of
 10 // the persistent state and should therefore not be serialized.
 11 private transient int[] cachedComputedData;

12 }

References

Java Language Specification, 3rd Ed: .8.3.1.3 transient Fields
Java 6 Object Serialization Specification: .1.5 Defining Serializable Fields for a Class

http://docs.oracle.com/javase/specs/jls/se5.0/html/classes.html#8.3.1.3
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6250

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 205

Ensure that 'readResolve' has the correct signature

Category: > > Important Java objects (2) Serialization (1)

Description: An implementation of 'readResolve' that does not have the signature that is expected by the
Java serialization framework is not recognized by the serialization mechanism.

If a class uses the method to specify a replacement object instance when the object is read from areadResolve

stream, ensure that the signature of is what the Java serialization mechanism expects.readResolve exactly

Recommendation

Ensure that the signature of the method in the class matches the expected signature:readResolve

ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException;

Note that the method return a .must java.lang.Object

If is used for instance control of a serializable singleton, (that is, to make sure that deserializing areadResolve

singleton class does not result in another instance of the singleton) it may be possible to use an with a singleenum

element instead. The Java serialization specification explicitly ensures that deserializing an does not createenum

a new instance. (For details about this technique, see [Bloch].)

Example

In the following example, has the wrong signature, which causes deserialization toFalseSingleton.readResolve

create a new instance of the singleton. However, has the correct signature, which meansSingleton.readResolve

that deserialization does not result in another instance of the singleton.

1 class FalseSingleton implements Serializable {
 2 private static final long serialVersionUID = -7480651116825504381L;
 3 private static FalseSingleton instance;
 4
 5 private FalseSingleton() {}
 6
 7 public static FalseSingleton getInstance() {
 8 if (instance == null) {
 9 instance = new FalseSingleton();
 10 }
 11 return instance;
 12 }
 13
 14 // BAD: Signature of 'readResolve' does not match the exact signature that is expected
 15 // (that is, it does not return 'java.lang.Object').
 16 public FalseSingleton readResolve() throws ObjectStreamException {
 17 return FalseSingleton.getInstance();
 18 }

19 }
20
21 class Singleton implements Serializable {

 22 private static final long serialVersionUID = -7480651116825504381L;
 23 private static Singleton instance;
 24
 25 private Singleton() {}
 26
 27 public static Singleton getInstance() {
 28 if (instance == null) {
 29 instance = new Singleton();
 30 }
 31 return instance;

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 206

 32 }
 33
 34 // GOOD: Signature of 'readResolve' matches the exact signature that is expected.
 35 // It replaces the singleton that is read from a stream with an instance of 'Singleton',
 36 // instead of creating a new singleton.
 37 private Object readResolve() throws ObjectStreamException {
 38 return Singleton.getInstance();
 39 }

40 }

References

Java API Documentation: .Serializable
Java 6 Object Serialization Specification: , 3.7 The readResolve Method 1.12 Serialization of Enum

.Constants
J. Bloch, , Item 77. Addison-Wesley, 2008.Effective Java (second edition)

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/input.html#5903
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6469
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6469

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 207

Ensure that a class that implements 'Externalizable' has a public no-argument constructor

Category: > > Important Java objects (2) Serialization (1)

Description: A class that implements 'Externalizable' but does not have a public no-argument constructor
causes an 'InvalidClassException' to be thrown.

A class that implements must have a public no-argument constructor. The constructor isjava.io.Externalizable

used by the Java serialization framework when it creates the object during deserialization. If the class does not
define such a constructor, the Java serialization framework throws an .InvalidClassException

The Java Development Kit API documentation for states:Externalizable

When an object is reconstructed, an instance is created using the public no-argExternalizable

constructor, then the method called.readExternal

Recommendation

Make sure that externalizable classes always have a no-argument constructor.

Example

In the following example, does not declare a public no-argument constructor. When the JavaWrongMemo

serialization framework tries to deserialize the object, an is thrown. However, doesInvalidClassException Memo

declare a public no-argument constructor, so that the object is deserialized successfully.

1 class WrongMemo implements Externalizable {
 2 private String memo;

3
 4 // BAD: No public no-argument constructor is defined. Deserializing this object
 5 // causes an 'InvalidClassException'.
 6
 7 public WrongMemo(String memo) {
 8 this.memo = memo;
 9 }
 10
 11 public void writeExternal(ObjectOutput arg0) throws IOException {
 12 //...
 13 }
 14 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 15 //...
 16 }

17 }
18
19 class Memo implements Externalizable {

 20 private String memo;
21

 22 // GOOD: Declare a public no-argument constructor, which is used by the
 23 // serialization framework when the object is deserialized.
 24 public Memo() {
 25 }
 26
 27 public Memo(String memo) {
 28 this.memo = memo;
 29 }

30
 31 public void writeExternal(ObjectOutput out) throws IOException {
 32 //...

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 208

 33 }
 34 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 35 //...
 36 }

37 }

References

Java API Documentation: .Externalizable

http://docs.oracle.com/javase/6/docs/api/java/io/Externalizable.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 209

Ensure that each non-transient, non-static field in a serializable class is serializable

Category: > > Important Java objects (2) Serialization (1)

Description: A non-transient field in a serializable class must also be serializable otherwise it causes the
class to fail to serialize with a 'NotSerializableException'.

If a serializable class is serialized using the default Java serialization mechanism, each non-static, non-transient
field in the class must also be serializable. Otherwise, the class generates a java.io.NotSerializableException
as its fields are written out by .ObjectOutputStream.writeObject

As an exception, classes that define their own and methods can have fields that are notreadObject writeObject

themselves serializable. The and methods are responsible for encoding any state inreadObject writeObject

those fields that needs to be serialized.

Recommendation

To avoid causing a , do one of the following:NotSerializableException

Marking the field as makes the serialization mechanism skip theMark the field as : transient transient

field. Before doing this, make sure that the field is not really intended to be part of the persistent state of
the object.

Explicitly defining the Define custom and methods for the class : readObject writeObject Serializable

 and methods enables you to choose which fields to read from, or write to, anreadObject writeObject

object stream during serialization.
If the field is part of the object's persistent state and you wish toMake the type of the field : Serializable

use Java's default serialization mechanism, the type of the field must implement . WhenSerializable

choosing this option, make sure that you follow best practices for serialization.

Example

In the following example, contains a field that is not serializable but is in aWrongPerformanceRecord factors

serializable class. This causes a when the field is written out by .java.io.NotSerializableException writeObject

However, contains a field that is marked as , so that the serializationPerformanceRecord factors transient

mechanism skips the field. This means that a correctly serialized record is output by .writeObject

1 class DerivedFactors { // Class that contains derived values computed from entries in a
 2 private Number efficiency; // performance record
 3 private Number costPerItem;
 4 private Number profitPerItem;
 5 ...

6 }
7
8 class WrongPerformanceRecord implements Serializable {

 9 private String unitId;
 10 private Number dailyThroughput;
 11 private Number dailyCost;
 12 private DerivedFactors factors; // BAD: 'DerivedFactors' is not serializable
 13 // but is in a serializable class. This
 14 // causes a 'java.io.NotSerializableException'
 15 // when 'WrongPerformanceRecord' is serialized.
 16 ...

17 }
18
19 class PerformanceRecord implements Serializable {

 20 private String unitId;
 21 private Number dailyThroughput;
 22 private Number dailyCost;

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 210

 23 transient private DerivedFactors factors; // GOOD: 'DerivedFactors' is declared
 24 // 'transient' so it does not contribute to the
 25 // serializable state of 'PerformanceRecord'.
 26 ...

27 }

References

Java API Documentation: , .Serializable ObjectOutputStream

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 211

Ensure that the signatures of 'readObject' and 'writeObject' on a serializable class are correct

Category: > > Important Java objects (2) Serialization (1)

Description: A serialized class that implements 'readObject' or 'writeObject' but does not use the correct
signatures causes the default serialization mechanism to be used.

A serializable object that defines its own serialization protocol using the methods and readObject writeObject

must use the signature that is expected by the Java serialization framework. Otherwise, the default serialization
mechanism is used.

Recommendation

Make sure that the signatures of and on serializable classes use these exact signatures:readObject writeObject

1 private void readObject(java.io.ObjectInputStream in)
 2 throws IOException, ClassNotFoundException;

3 private void writeObject(java.io.ObjectOutputStream out)
 4 throws IOException;

Example

In the following example, defines and using the wrong signatures.WrongNetRequest readObject writeObject

However, defines them correctly.NetRequest

1 class WrongNetRequest implements Serializable {
 2 // BAD: Does not match the exact signature required for a custom
 3 // deserialization protocol. Will not be called during deserialization.
 4 void readObject(ObjectInputStream in) {
 5 //...
 6 }
 7
 8 // BAD: Does not match the exact signature required for a custom
 9 // serialization protocol. Will not be called during serialization.
 10 protected void writeObject(ObjectOutputStream out) {
 11 //...
 12 }

13 }
14
15 class NetRequest implements Serializable {

 16 // GOOD: Signature for a custom deserialization implementation.
 17 private void readObject(ObjectInputStream in) {
 18 //...
 19 }
 20
 21 // GOOD: Signature for a custom serialization implementation.
 22 private void writeObject(ObjectOutputStream out) {
 23 //...
 24 }

25 }

References

Java API Documentation: .Serializable
Oracle Technology Network: .Discover the secrets of the Java Serialization API

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://www.oracle.com/technetwork/articles/java/javaserial-1536170.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 212

JUnit

Ensure that a JUnit test case class contains correctly declared test methods
Ensure that a JUnit test method that overrides 'tearDown' calls 'super.tearDown'
Use the correct signature for a 'suite' method in JUnit

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 213

Ensure that a JUnit test case class contains correctly declared test methods

Category: > Important JUnit

Description: A test case class whose test methods are not recognized by JUnit 3.8 as valid declarations
is not used.

A JUnit 3.8 test case class (that is, a class that is a subtype of) should contain testjunit.framework.TestCase

methods, and each method must have the correct signature to be used by JUnit.

Recommendation

Ensure that the test case class contains some test methods, and that each method is of the form:

public void testXXX()

Note that the method name must start with and the method must not take any parameters.test

This rule applies only to JUnit 3.8-style test case classes. In JUnit 4, it is no longer required to extend
 to mark test methods.junit.framework.TestCase

Example

In the following example, does not contain any valid JUnit test methods. However, TestCaseNoTests38 MyTests

contains two valid JUnit test methods.

1 // BAD: This test case class does not have any valid JUnit 3.8 test methods.
2 public class TestCaseNoTests38 extends TestCase {

 3 // This is not a test case because it does not start with 'test'.
 4 public void simpleTest() {
 5 //...
 6 }

7
 8 // This is not a test case because it takes two parameters.
 9 public void testNotEquals(int i, int j) {
 10 assertEquals(i != j, true);
 11 }

12
 13 // This is recognized as a test, but causes JUnit to fail
 14 // when run because it is not public.
 15 void testEquals() {
 16 //...
 17 }

18 }
19
20 // GOOD: This test case class correctly declares test methods.
21 public class MyTests extends TestCase {

 22 public void testEquals() {
 23 assertEquals(1, 1);
 24 }
 25 public void testNotEquals() {
 26 assertFalse(1 == 2);
 27 }

28 }

References

JUnit: .JUnit Cookbook

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 214

Ensure that a JUnit test method that overrides 'tearDown' calls 'super.tearDown'

Category: > Important JUnit

Description: A JUnit 3.8 test method that overrides 'tearDown' but does not call 'super.tearDown' may
result in subsequent tests failing, or allow the current state to persist and affect subsequent tests.

A JUnit 3.8 test method that overrides a non-empty method should call to make suretearDown super.tearDown

that the superclass performs its de-initialization routines. Not calling may result in test failures intearDown

subsequent tests, or allow the current state to persist and affect any following tests.

Recommendation

Call at the end of the overriding method.super.tearDown tearDown

Example

In the following example, does not call , which may cause subsequentTearDownNoSuper.tearDown super.tearDown

tests to fail, or allow the internal state to be maintained. However, call TearDownSuper.tearDown does
, at the end of the method, to enable to perform de-initialization.super.tearDown FrameworkTestCase.tearDown

1 // Abstract class that initializes then shuts down the
2 // framework after each set of tests
3 abstract class FrameworkTestCase extends TestCase {

 4 @Override
 5 protected void setUp() throws Exception {
 6 super.setUp();
 7 Framework.init();
 8 }
 9
 10 @Override
 11 protected void tearDown() throws Exception {
 12 super.tearDown();
 13 Framework.shutdown();
 14 }

15 }
16
17 // The following classes extend 'FrameworkTestCase' to reuse the
18 // 'setUp' and 'tearDown' methods of the framework.
19
20 public class TearDownNoSuper extends FrameworkTestCase {

 21 @Override
 22 protected void setUp() throws Exception {
 23 super.setUp();
 24 }
 25
 26 public void testFramework() {
 27 //...
 28 }
 29
 30 public void testFramework2() {
 31 //...
 32 }
 33
 34 @Override
 35 protected void tearDown() throws Exception {
 36 // BAD: Does not call 'super.tearDown'. May cause later tests to fail
 37 // when they try to re-initialize an already initialized framework.
 38 // Even if the framework allows re-initialization, it may maintain the
 39 // internal state, which could affect the results of succeeding tests.

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 215

 40 System.out.println("Tests complete");
 41 }

42 }
43
44 public class TearDownSuper extends FrameworkTestCase {

 45 @Override
 46 protected void setUp() throws Exception {
 47 super.setUp();
 48 }
 49
 50 public void testFramework() {
 51 //...
 52 }
 53
 54 public void testFramework2() {
 55 //...
 56 }
 57
 58 @Override
 59 protected void tearDown() throws Exception {
 60 // GOOD: Correctly calls 'super.tearDown' to shut down the
 61 // framework.
 62 System.out.println("Tests complete");
 63 super.tearDown();
 64 }

65 }

References

JUnit: .JUnit Cookbook

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 216

Use the correct signature for a 'suite' method in JUnit

Category: > Important JUnit

Description: A 'suite' method in a JUnit 3.8 test that does not match the expected signature is not
detected by JUnit.

JUnit 3.8 requires that a method for defining a that will be used by a has a specificsuite TestSuite TestRunner

signature. If the method does not have the expected signature, JUnit does not detect the method as a suite suite

method.

Recommendation

Make sure that methods in junit classes are declared both and , and that they have asuite TestCase public static

return type of or one of its subtypes.junit.framework.Test

Example

In the following example, is not detected by JUnit because it is not declared .BadSuiteMethod.suite public

However, detected by JUnit because it has the expected signature.CorrectSuiteMethod.suite is

1 public class BadSuiteMethod extends TestCase {
 2 // BAD: JUnit 3.8 does not detect the following method as a 'suite' method.
 3 // The method should be public, static, and return 'junit.framework.Test'
 4 // or one of its subtypes.
 5 static Test suite() {
 6 TestSuite suite = new TestSuite();
 7 suite.addTest(new MyTests("testEquals"));
 8 suite.addTest(new MyTests("testNotEquals"));
 9 return suite;
 10 }

11 }
12
13 public class CorrectSuiteMethod extends TestCase {

 14 // GOOD: JUnit 3.8 correctly detects the following method as a 'suite' method.
 15 public static Test suite() {
 16 TestSuite suite = new TestSuite();
 17 suite.addTest(new MyTests("testEquals"));
 18 suite.addTest(new MyTests("testNotEquals"));
 19 return suite;
 20 }

21 }

References

JUnit: .JUnit Cookbook

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 217

Logic Errors (1)

Avoid extending or implementing an annotation
Avoid nested loops that use the same variable
Do not compare identical expressions

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 218

Avoid extending or implementing an annotation

Category: > Important Logic Errors (1)

Description: Extending or implementing an annotation is unlikely to be what the programmer intends.

Although an annotation type is a special kind of interface that can be implemented by a concrete class, this is not
its intended use. It is more likely that an annotation type should be used to annotate a class.

Recommendation

Ensure that any annotations are used to annotate a class, unless they are really supposed to be extended or
implemented by the class.

Example

In the following example, the annotation is implemented by the class .Deprecated ImplementsAnnotation

1 public abstract class ImplementsAnnotation implements Deprecated {
 2 // ...

3 }

The following example shows the intended use of annotations: to annotate the class .ImplementsAnnotationFix

1 @Deprecated
2 public abstract class ImplementsAnnotationFix {

 3 // ...
4 }

References

The Java Language Specification: .Annotation Types
The Java Tutorials: .Annotations
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://docs.oracle.com/javase/specs/jls/se7/html/jls-9.html#jls-9.6
http://docs.oracle.com/javase/tutorial/java/annotations/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 219

Avoid nested loops that use the same variable

Category: > Important Logic Errors (1)

Description: Nested loops in which the iteration variable is the same for each loop are difficult to
understand.

The behavior of nested loops in which the iteration variable is the same for both loops is difficult to understand
because the inner loop affects the iteration variable of the outer loop. This is probably a typographical error.

Recommendation

Ensure that a different iteration variable is used for each loop.

References

The Java Language Specification: .The basic for Statement

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.14.1

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 220

Do not compare identical expressions

Category: > Important Logic Errors (1)

Description: If the same expression occurs on both sides of a comparison operator, the operator is
redundant, and probably indicates a mistake.

If two identical expressions are compared (that is, checked for equality or inequality), this is typically an indication
of a mistake, because the Boolean value of the comparison is always the same. Often, it indicates that the wrong
qualifier has been used on a field access.

Recommendation

It is never good practice to compare a value with itself. If you require constant behavior, use the Boolean literals
 and , rather than encoding them obscurely as or similar.true false 1 == 1

Example

In the example below, the original version of compares with , which always returns . TheCustomer id id true

corrected version of includes the missing qualifier in the comparison of with .Customer o id o.id

1 class Customer {
 2 ...
 3 public boolean equals(Object o) {
 4 if (o == null) return false;
 5 if (Customer.class != o.getClass()) return false;
 6 Customer other = (Customer)o;
 7 if (!name.equals(o.name)) return false;
 8 if (id != id) return false; // Comparison of identical values
 9 return true;
 10 }

11 }
12
13 class Customer {

 14 ...
 15 public boolean equals(Object o) {
 16 if (o == null) return false;
 17 if (Customer.class != o.getClass()) return false;
 18 Customer other = (Customer)o;
 19 if (!name.equals(o.name)) return false;
 20 if (id != o.id) return false; // Comparison corrected
 21 return true;
 22 }

23 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 221

Magic Constants

Avoid magic numbers and add a named constant
Avoid magic numbers and use an existing named constant
Avoid magic strings and add a named constant
Avoid magic strings and use an existing named constant

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 222

Avoid magic numbers and add a named constant

Category: > Important Magic Constants

Description: A magic number makes code less readable and maintainable.

A is a numeric literal (for example, ,) that is used in the middle of a block of code withoutmagic number 8080 2048

explanation. It is considered bad practice to use magic numbers because:

A number in isolation can be difficult for other programmers to understand.
It can be difficult to update the code if the requirements change. For example, if the magic number
represents the number of guests allowed, adding one more guest means that you must change every
occurrence of the magic number.

Recommendation

Assign the magic number to a new named constant, and use this instead. This overcomes the two problems with
magic numbers:

A named constant (such as) is more easily understood by other programmers.MAX_GUESTS

Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the number in only one place.

Example

The following example shows a magic number . This should be replaced by a new named constant, astimeout

shown in the fixed version.

1 // Problem version
2 public class MagicConstants
3 {

 4 final static public String IP = "127.0.0.1";
 5 final static public int PORT = 8080;
 6 final static public String USERNAME = "test";

7
 8 public void serve(String ip, int port, String user, int timeout) {
 9 // ...
 10 }

11
 12 public static void main(String[] args) {
 13 int timeout = 60000; // AVOID: Magic number

14
 15 new MagicConstants().serve(IP, PORT, USERNAME, timeout);
 16 }

17 }
18
19
20 // Fixed version
21 public class MagicConstants
22 {

 23 final static public String IP = "127.0.0.1";
 24 final static public int PORT = 8080;
 25 final static public String USERNAME = "test";
 26 final static public int TIMEOUT = 60000; // Magic number is replaced by named constant

27
 28 public void serve(String ip, int port, String user, int timeout) {
 29 // ...
 30 }

31

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 223

 32 public static void main(String[] args) {
33

 34 new MagicConstants().serve(IP, PORT, USERNAME, TIMEOUT); // Use 'TIMEOUT' constant
 35 }

36 }

References

R. C. Martin, , §17.G25. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 224

Avoid magic numbers and use an existing named constant

Category: > Important Magic Constants

Description: A magic number, which is used instead of an existing named constant, makes code less
readable and maintainable.

A is a numeric literal (for example, ,) that is used in the middle of a block of code withoutmagic number 8080 2048

explanation. It is considered bad practice to use magic numbers because:

A number in isolation can be difficult for other programmers to understand.
It can be difficult to update the code if the requirements change. For example, if the magic number
represents the number of guests allowed, adding one more guest means that you must change every
occurrence of the magic number.

Recommendation

Replace the magic number with the existing named constant. This overcomes the two problems with magic
numbers:

A named constant (such as) is more easily understood by other programmers.MAX_GUESTS

Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the number in only one place.

Example

The following example shows a magic number . This should be replaced by the existing namedinternal_port

constant, as shown in the fixed version.

1 // Problem version
2 public class MagicConstants
3 {

 4 final static public String IP = "127.0.0.1";
 5 final static public int PORT = 8080;
 6 final static public String USERNAME = "test";
 7 final static public int TIMEOUT = 60000;

8
 9 public void serve(String ip, int port, String user, int timeout) {
 10 // ...
 11 }

12
 13 public static void main(String[] args) {
 14 int internal_port = 8080; // AVOID: Magic number

15
 16 new MagicConstants().serve(IP, internal_port, USERNAME, TIMEOUT);
 17 }

18 }
19
20
21 // Fixed version
22 public class MagicConstants
23 {

 24 final static public String IP = "127.0.0.1";
 25 final static public int PORT = 8080;
 26 final static public String USERNAME = "test";
 27 final static public int TIMEOUT = 60000;

28
 29 public void serve(String ip, int port, String user, int timeout) {
 30 // ...

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 225

 31 }
32

 33 public static void main(String[] args) {
34

 35 new MagicConstants().serve(IP, PORT, USERNAME, TIMEOUT); // Use 'PORT' constant
 36 }

37 }

References

R. C. Martin, , §17.G25. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 226

Avoid magic strings and add a named constant

Category: > Important Magic Constants

Description: A magic string makes code less readable and maintainable.

A is a string literal (for example, ,) that is used in the middle of a block of codemagic string "SELECT" "127.0.0.1"

without explanation. It is considered bad practice to use magic strings because:

A string in isolation can be difficult for other programmers to understand.
It can be difficult to update the code if the requirements change. For example, if the magic string
represents a protocol, changing the protocol means that you must change every occurrence of the
protocol.

Recommendation

Assign the magic string to a new named constant, and use this instead. This overcomes the two problems with
magic strings:

A named constant (such as) is more easily understood by other programmers.SMTP_HELO

Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the string in only one place.

Example

The following example shows a magic string . This should be replaced by a new named constant, asusername

shown in the fixed version.

1 // Problem version
2 public class MagicConstants
3 {

 4 final static public String IP = "127.0.0.1";
 5 final static public int PORT = 8080;
 6 final static public int TIMEOUT = 60000;

7
 8 public void serve(String ip, int port, String user, int timeout) {
 9 // ...
 10 }

11
 12 public static void main(String[] args) {
 13 String username = "test"; // AVOID: Magic string

14
 15 new MagicConstants().serve(IP, PORT, username, TIMEOUT);
 16 }

17 }
18
19
20 // Fixed version
21 public class MagicConstants
22 {

 23 final static public String IP = "127.0.0.1";
 24 final static public int PORT = 8080;
 25 final static public int USERNAME = "test"; // Magic string is replaced by named constant
 26 final static public int TIMEOUT = 60000;

27
 28 public void serve(String ip, int port, String user, int timeout) {
 29 // ...
 30 }

31

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 227

 32 public static void main(String[] args) {
33

 34 new MagicConstants().serve(IP, PORT, USERNAME, TIMEOUT); // Use 'USERNAME' constant
 35 }

36 }

References

R. C. Martin, , §17.G25. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 228

Avoid magic strings and use an existing named constant

Category: > Important Magic Constants

Description: A magic string, which is used instead of an existing named constant, makes code less
readable and maintainable.

A is a string literal (for example, ,) that is used in the middle of a block of codemagic string "SELECT" "127.0.0.1"

without explanation. It is considered bad practice to use magic strings because:

A string in isolation can be difficult for other programmers to understand.
It can be difficult to update the code if the requirements change. For example, if the magic string
represents a protocol, changing the protocol means that you must change every occurrence of the
protocol.

Recommendation

Replace the magic string with the existing named constant. This overcomes the two problems with magic strings:

A named constant (such as) is more easily understood by other programmers.SMTP_HELO

Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the string in only one place.

Example

The following example shows a magic string . This should be replaced by the existing namedinternal_ip

constant, as shown in the fixed version.

1 // Problem version
2 public class MagicConstants
3 {

 4 final static public String IP = "127.0.0.1";
 5 final static public int PORT = 8080;
 6 final static public String USERNAME = "test";
 7 final static public int TIMEOUT = 60000;

8
 9 public void serve(String ip, int port, String user, int timeout) {
 10 // ...
 11 }

12
 13 public static void main(String[] args) {
 14 String internal_ip = "127.0.0.1"; // AVOID: Magic string

15
 16 new MagicConstants().serve(internal_ip, PORT, USERNAME, TIMEOUT);
 17 }

18 }
19
20
21 // Fixed version
22 public class MagicConstants
23 {

 24 final static public String IP = "127.0.0.1";
 25 final static public int PORT = 8080;
 26 final static public String USERNAME = "test";
 27 final static public int TIMEOUT = 60000;

28
 29 public void serve(String ip, int port, String user, int timeout) {
 30 // ...
 31 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 229

32
 33 public static void main(String[] args) {

34
 35 new MagicConstants().serve(IP, PORT, USERNAME, TIMEOUT); //Use 'IP' constant
 36 }

37 }

References

R. C. Martin, , §17.G25. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 230

Naming (2)

Avoid declaring a method with the name 'equal'
Avoid declaring a method with the name 'hashcode'
Avoid declaring a method with the name 'tostring'
Avoid methods in the same class whose names differ only in capitalization
Avoid naming a class with the same name as its superclass
Avoid overloaded methods that have similar parameter types
Avoid using 'enum' as an identifier

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 231

Avoid declaring a method with the name 'equal'

Category: > Important Naming (2)

Description: A method named 'equal' may be intended to be named 'equals'.

A method named may be a typographical error. may have been intended instead.equal equals

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method .Object.equals

Example

The following example shows a method named . It may be better to rename it.equal

1 public class Complex
2 {

 3 private double real;
 4 private double complex;

5
 6 // ...

7
 8 public boolean equal(Object obj) { // The method is named 'equal'.
 9 if (!getClass().equals(obj.getClass()))
 10 return false;
 11 Complex other = (Complex) obj;
 12 return real == other.real && complex == other.complex;
 13 }

14 }

References

Java 2 Platform, Standard Edition 5.0, API Specification: .equals

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#equals(java.lang.Object)

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 232

Avoid declaring a method with the name 'hashcode'

Category: > Important Naming (2)

Description: A method named 'hashcode' may be intended to be named 'hashCode'.

A method named may be a typographical error. (different capitalization) may have beenhashcode hashCode

intended instead.

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method .Object.hashCode

Example

The following example shows a method named . It may be better to rename it.hashcode

1 public class Person
2 {

 3 private String title;
 4 private String forename;
 5 private String surname;

6
 7 // ...

8
 9 public int hashcode() { // The method is named 'hashcode'.
 10 int hash = 23 * title.hashCode();
 11 hash ^= 13 * forename.hashCode();
 12 return hash ^ surname.hashCode();
 13 }

14 }

References

Java 2 Platform, Standard Edition 5.0, API Specification: .hashCode

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#hashCode()

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 233

Avoid declaring a method with the name 'tostring'

Category: > Important Naming (2)

Description: A method named 'tostring' may be intended to be named 'toString'.

A method named may be a typographical error. (different capitalization) may have beentostring toString

intended instead.

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method .Object.toString

Example

The following example shows a method named . It may be better to rename it.tostring

1 public class Customer
2 {

 3 private String title;
 4 private String forename;
 5 private String surname;

6
 7 // ...

8
 9 public String tostring() { // The method is named 'tostring'.
 10 return title + " " + forename + " " + surname;
 11 }

12 }

References

Java 2 Platform, Standard Edition 5.0, API Specification: .toString

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#toString()

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 234

Avoid methods in the same class whose names differ only in capitalization

Category: > Important Naming (2)

Description: Methods in the same class whose names differ only in capitalization are confusing.

It is bad practice to have methods in a class with names that differ only in their capitalization. This can be
confusing and lead to mistakes.

Recommendation

Name the methods to make the distinction between them clear.

Example

The following example shows a class that contains two methods: and . One or both of them should betoUri toURI

renamed.

1 public class InternetResource
2 {

 3 private String protocol;
 4 private String host;
 5 private String path;

6
 7 // ...

8
 9 public String toUri() {
 10 return protocol + "://" + host + "/" + path;
 11 }

12
 13 // ...

14
 15 public String toURI() {
 16 return toUri();
 17 }

18 }

References

R. C. Martin, , 17.N4. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 235

Avoid naming a class with the same name as its superclass

Category: > Important Naming (2)

Description: A class that has the same name as its superclass may be confusing.

A class that has the same name as its superclass may be confusing.

Recommendation

Clarify the difference between the subclass and the superclass by using different names.

Example

In the following example, it is not clear that the field refers to the inner class and not theattendees Attendees

class .com.company.util.Attendees

1 import com.company.util.Attendees;
2
3 public class Meeting
4 {

 5 private Attendees attendees;
6

 7 // ...
 8 // Many lines
 9 // ...

10
 11 // AVOID: This class has the same name as its superclass.
 12 private static class Attendees extends com.company.util.Attendees
 13 {
 14 // ...
 15 }

16 }

To fix this, the inner class should be renamed.

References

R. C. Martin, , §17.N4. Prentice Hall, 2008.Clean Code: A Handbook of Agile Software Craftsmanship

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 236

Avoid overloaded methods that have similar parameter types

Category: > Important Naming (2)

Description: Overloaded methods that have the same number of parameters, where each pair of
corresponding parameter types is convertible by casting or autoboxing, may be confusing.

Overloaded method declarations that have the same number of parameters may be confusing if none of the
corresponding pairs of parameter types is substantially different. A pair of parameter types A and B is
substantially different if A cannot be cast to B and B cannot be cast to A. If the parameter types are not
substantially different then the programmer may assume that the method with parameter type A is called when in
fact the method with parameter type B is called.

Recommendation

It is generally best to avoid declaring overloaded methods with the same number of parameters, unless at least
one of the corresponding parameter pairs is substantially different.

Example

Declaring overloaded methods and is confusing because the parameterprocess(Object obj) process(String s)

types are not substantially different. It is clearer to declare methods with different names: processObject(Object
 and .obj) processString(String s)

In contrast, declaring overloaded methods and is notprocess(Object obj, String s) process(String s, int i)

as confusing because the second parameters of each method are substantially different.

References

J. Bloch, , Item 41. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .15.12 Method Invocation Expressions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 237

Avoid using 'enum' as an identifier

Category: > Important Naming (2)

Description: Using 'enum' as an identifier makes the code incompatible with Java 5 and later.

Enumerations, or enums, were introduced in Java 5, with the keyword . Code written before this may use enum

 as an identifier. To compile such code, you must compile it with a command such as .enum javac -source 1.4 ...

However, this means that you cannot use any new features that are provided in Java 5 and later.

Recommendation

To make it easier to compile the code and add code that uses new Java features, rename any identifiers that are
named in legacy code.enum

Example

In the following example, is used as the name of a variable. This means that the code does not compileenum

unless the compiler's source language is set to 1.4 or earlier. To avoid this constraint, the variable should be
renamed.

1 class Old
2 {

 3 public static void main(String[] args) {
 4 int enum = 13; // AVOID: 'enum' is a variable.
 5 System.out.println("The value of enum is " + enum);
 6 }

7 }

References

Java Language Specification: .8.9 Enums

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 238

Random (1)

Do not create an instance of 'Random' for each pseudo-random number required

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 239

Do not create an instance of 'Random' for each pseudo-random number required

Category: > Important Random (1)

Description: Creating an instance of 'Random' for each pseudo-random number required does not
guarantee an evenly distributed sequence of random numbers.

A program that uses to generate a sequence of pseudo-random numbers create ajava.util.Random should not
new instance of every time a new pseudo-random number is required (for example, Random new

).Random().nextInt()

According to the Java API specification:

If two instances of are created with the same seed, and the same sequence of methodRandom

calls is made for each, they will generate and return identical sequences of numbers.

The sequence of pseudo-random numbers returned by these calls depends only on the value of the seed. If you
construct a new object each time a pseudo-random number is needed, this does not generate a goodRandom

distribution of pseudo-random numbers, even though the parameterless constructor tries to initializeRandom()

itself with a unique seed.

Recommendation

Create a object once and use the same instance when generating sequences of pseudo-random numbersRandom

(by calling , , and so on).nextInt nextLong

Example

In the following example, generating a series of pseudo-random numbers, such as and notReallyRandom

, by creating a new instance of each time is unlikely to result in a good distribution ofnotReallyRandom2 Random

pseudo-random numbers. In contrast, generating a series of pseudo-random numbers, such as and random1

, by calling each time likely to result in a good distribution. This is because the numbers arerandom2 nextInt is
based on only one object.Random

1 public static void main(String args[]) {
 2 // BAD: A new 'Random' object is created every time
 3 // a pseudo-random integer is required.
 4 int notReallyRandom = new Random().nextInt();
 5 int notReallyRandom2 = new Random().nextInt();
 6
 7 // GOOD: The same 'Random' object is used to generate
 8 // two pseudo-random integers.
 9 Random r = new Random();
 10 int random1 = r.nextInt();
 11 int random2 = r.nextInt();

12 }

References

Java API Documentation: .Random

http://docs.oracle.com/javase/6/docs/api/java/util/Random.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 240

Result Checking

Avoid calling 'next' from an iterator implementation of 'hasNext'
Do not ignore a method's return value
Ensure that the results of all method calls are used
Handle the results of calls to a particular method consistently

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 241

Avoid calling 'next' from an iterator implementation of 'hasNext'

Category: > Important Result Checking

Description: Iterator implementations whose 'hasNext' method calls 'next' are most likely incorrect.

Iterator implementations with a method that calls the method are most likely incorrect. This ishasNext next

because changes the iterator's position to the next element and returns that element, which is unlikely to benext

desirable in the implementation of .hasNext

Recommendation

Ensure that any calls to from within are legitimate. The method should indicate whethernext hasNext hasNext

there are further elements remaining in the iteration without changing the iterator's state by calling .next

Example

In the following example, which outputs the contents of a string, calls , which has the effect ofhasNext next

changing the iterator's position. Given that also calls when it outputs an item, some items are skippedmain next

and only half the items are output.

1 public class NextFromIterator implements Iterator<String> {
 2 private int position = -1;
 3 private List<String> list = new ArrayList<String>() {{
 4 add("alpha"); add("bravo"); add("charlie"); add("delta"); add("echo"); add("foxtrot");
 5 }};
 6
 7 public boolean hasNext() {
 8 return next() != null; // BAD: Call to 'next'
 9 }
 10
 11 public String next() {
 12 position++;
 13 return position < list.size() ? list.get(position) : null;
 14 }

15
 16 public void remove() {
 17 // ...
 18 }
 19
 20 public static void main(String[] args) {
 21 NextFromIterator x = new NextFromIterator();
 22 while(x.hasNext()) {
 23 System.out.println(x.next());
 24 }
 25 }

26 }

Instead, the implementation of should use another way of indicating whether there are further elements inhasNext

the string without calling . For example, could check the underlying array directly to see if there is annext hasNext

element at the next position.

References

Java API Documentation: , .Iterator.hasNext() Iterator.next()

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#hasNext%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#next%28%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 242

Do not ignore a method's return value

Category: > Important Result Checking

Description: Ignoring an exceptional value that is returned by a method may cause subsequent code to
fail.

Many methods in the Java Development Kit (for examples, see the references below) return status values (for
example, as an) to indicate whether the method execution finished normally. They may return an error code ifint

the method did not finish normally. If the method result is not checked, exceptional method executions may cause
subsequent code to fail.

Recommendation

You should insert additional code to check the return value and take appropriate action.

Example

The following example uses the method to read 16 bytes from an input stream andjava.io.InputStream.read

store them in an array. However, may not actually be able to read as many bytes as requested, for exampleread

because the stream is exhausted. Therefore, the code should not simply rely on the array being filled withb

precisely 16 bytes from the input stream. Instead, the code should check the method's return value, which
indicates the number of bytes actually read.

1 java.io.InputStream is = (...);
2 byte[] b = new byte[16];
3 is.read(b);

References

CERT Secure Coding Standards: .EXP00-J. Do not ignore values returned by methods
Java API Documentation, java.util.Queue: .offer
Java API Documentation, java.util.concurrent.BlockingQueue: .offer
Java API Documentation, java.util.concurrent.locks.Condition: , , .await awaitUntil awaitNanos
Java API Documentation, java.io.File: , , , , , , createNewFile delete mkdir mkdirs renameTo setLastModified

, , .setReadOnly setWritable(boolean) setWritable(boolean, boolean)
Java API Documentation, java.io.InputStream: , , .skip read(byte[]) read(byte[], int, int)

https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+values+returned+by+methods
http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html#offer%28E%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html#offer%28E,%20long,%20java.util.concurrent.TimeUnit%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#await%28long,%20java.util.concurrent.TimeUnit%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#awaitUntil%28java.util.Date%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#awaitNanos%28long%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#createNewFile%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#delete%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#mkdir%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#mkdirs%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#renameTo%28java.io.File%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setLastModified%28long%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setReadOnly%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setWritable%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setWritable%28boolean,%20boolean%29
http://docs.oracle.com/javase/6/docs/api/java/io/InputStream.html#skip%28long%29

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 243

Ensure that the results of all method calls are used

Category: > Important Result Checking

Description: If most of the calls to a method use the return value of that method, the calls that do not
check the return value may be mistakes.

If the result of a method call is used in most cases, any calls to that method where the result is ignored are
inconsistent, and may be erroneous uses of the API. Often, the result is some kind of status indicator, and is
therefore important to check.

Recommendation

Ensure that the results of calls to a particular method are used. The return value of a method that returns aall
status value should normally be checked before any modified data or allocated resource is used.

Example

Line 1 of the following example shows the value returned by being ignored. Line 3 shows it being assigned to get

.fs

1 FileSystem.get(conf); // Return value is not used
2
3 FileSystem fs = FileSystem.get(conf); // Return value is assigned to 'fs'

References

CERT Secure Coding Standards: .EXP00-J. Do not ignore values returned by methods

https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+values+returned+by+methods

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 244

Handle the results of calls to a particular method consistently

Category: > Important Result Checking

Description: If the same operation is usually performed on the result of a method call, any cases where it
is not performed may indicate resource leaks or other problems.

If the same operation (for example, , ,) is usually performed on the result of a method call, anyfree delete close

instances where it is not performed may be misuses of the API, leading to resource leaks or other problems.

Recommendation

Ensure that the same operation is performed on the result of calls to a particular method, if appropriate.all

Example

In the following example of good usage, the result of the call to is assigned to writer.prepareAppendValue

, and later is called on . Any instances where is called may cause resourceoutValue close outValue close not
leaks.

1 DataOutputStream outValue = null;
2 try {

 3 outValue = writer.prepareAppendValue(6);
 4 outValue.write("value0".getBytes());

5 }
6 catch (IOException e) {
7 }
8 finally {

 9 if (outValue != null) {
 10 outValue.close();
 11 }

12 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 245

Size

Avoid creating classes that contain many fields
Avoid creating files that contain many lines of code
Avoid creating methods that contain many levels of nesting
Avoid creating methods that contain many lines of code
Avoid creating methods that have many parameters
Avoid too many complex statements in a block
Review files that have been changed by many authors

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 246

Avoid creating classes that contain many fields

Category: > Important Size

Description: A class that contains a high number of fields may be too big or need refactoring. The number
of fields should be less than 26.

A class that contains a high number of fields may indicate the following problems:

The class may be too big or have too many responsibilities.
Several of the fields may be part of the same abstraction.

Recommendation

The solution depends on the reason for the high number of fields:

If the class is too big, you should split it into multiple smaller classes.
If several of the fields are part of the same abstraction, you should group them into a separate class, using
the 'Extract Class' refactoring described in [Fowler].

Example

In the following example, class contains a number of fields.Person

1 class Person {
 2 private String m_firstName;
 3 private String m_LastName;
 4 private int m_houseNumber;
 5 private String m_street;
 6 private String m_settlement;
 7 private Country m_country;
 8 private Postcode m_postcode;
 9 // ...

10 }

This can be refactored by grouping fields that are part of the same abstraction into new classes and .Name Address

1 class Name {
 2 private String m_firstName;
 3 private String m_lastName;
 4 // ...

5 }
6
7 class Address {

 8 private int m_houseNumber;
 9 private String m_street;
 10 private String m_settlement;
 11 private Country m_country;
 12 private Postcode m_postcode;
 13 // ...

14 }
15
16 class Person {

 17 private Name m_name;
 18 private Address m_address;
 19 // ...

20 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 247

References

M. Fowler, . Addison-Wesley, 1999.Refactoring

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 248

Avoid creating files that contain many lines of code

Category: > Important Size

Description: A file that contains a high number of lines of code may be difficult to maintain, increases the
likelihood of merge conflicts, may increase network traffic, and may indicate weak code organisation. The
number of lines in the file should be less than 1000.

A file that contains a high number of lines of code has a number of problems:

It can be difficult to understand and maintain, even with good tool support.
It increases the likelihood of multiple developers needing to work on the same file at once, and it therefore
increases the likelihood of merge conflicts.
It may increase network traffic if you use a version control system that requires the whole file to be
transmitted even for a tiny change.
It may arise as a result of bundling many unrelated things into the same file, and so it can indicate weak
code organisation.

Recommendation

The solution depends on the reason for the high number of lines:

If the file's main class is too large, you should refactor it into smaller classes, for example by using the
'Extract Class' refactoring from [Fowler].
If the file's main class contains many nested classes, you should move the nested classes to their own
files (in a subsidiary package, where appropriate).
If the file contains multiple non-public classes in addition to its main class, you should move them into
separate files. This is particularly important if they are logically unrelated to the file's main class.
If the file has been automatically generated by a tool, no changes are required because the file will not be
maintained by a programmer.

References

M. Fowler, . Addison-Wesley, 1999.Refactoring

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 249

Avoid creating methods that contain many levels of nesting

Category: > Important Size

Description: A method that contains a high level of nesting may be difficult to understand. The number of
levels should be less than 10.

A method that contains a high level of nesting can be very difficult to understand. As noted in [McConnell], the
human brain cannot easily handle more than three levels of nested statements.if

Recommendation

Extract nested statements into new methods, for example by using the 'Extract Method' refactoring from [Fowler].

For more ways to reduce the level of nesting in a method, see [McConnell].

Furthermore, a method that has a high level of nesting often indicates that its design can be improved in other
ways, as well as dealing with the nesting problem itself.

Example

In the following example, the code has four levels of nesting and is unnecessarily difficult to read.

1 public static void printCharacterCodes_Bad(String[] strings) {
 2 if (strings != null) {
 3 for (String s : strings) {
 4 if (s != null) {
 5 for (int i = 0; i < s.length(); i++) {
 6 System.out.println(s.charAt(i) + "=" + (int) s.charAt(i));
 7 }
 8 }
 9 }
 10 }

11 }

In the following modified example, some of the nested statements have been extracted into a new method
.PrintAllCharInts

1 public static void printAllCharInts(String s) {
 2 if (s != null) {
 3 for (int i = 0; i < s.length(); i++) {
 4 System.out.println(s.charAt(i) + "=" + (int) s.charAt(i));
 5 }
 6 }

7 }
8 public static void printCharacterCodes_Good(String[] strings) {

 9 if (strings != null) {
 10 for(String s : strings){
 11 printAllCharInts(s);
 12 }
 13 }

14 }

References

M. Fowler, , pp. 89-95. Addison-Wesley, 1999.Refactoring
S. McConnell, , 2nd Edition, §19.4. Microsoft Press, 2004.Code Complete

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 250

Avoid creating methods that contain many lines of code

Category: > Important Size

Description: A method that contains a high number of lines of code may be difficult to maintain and is
likely to lack cohesion. The number of lines in the method should be less than 300.

A method that contains a high number of lines of code has a number of problems:

It can be difficult to understand, difficult to check, and a common source of defects (particularly towards
the end of the method, because few people read that far).
It is likely to lack cohesion because it has too many responsibilities.
It increases the risk of introducing new defects during routine code changes.

Recommendation

Break up long methods into smaller methods by extracting parts of their functionality into simpler methods, for
example by using the 'Extract Method' refactoring from [Fowler]. As an approximate guide, a method should fit on
one screen or side of Letter/A4 paper.

References

M. Fowler, , pp. 89-95. Addison-Wesley, 1999.Refactoring

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 251

Avoid creating methods that have many parameters

Category: > Important Size

Description: A method or constructor that has a high number of parameters makes maintenance more
difficult. The number of parameters should be less than 9.

A method (or constructor) that uses a high number of formal parameters makes maintenance more difficult:

It is difficult to write a call to the method, because the programmer must know how to supply an
appropriate value for each parameter.
It is difficult to understand, because calls to the method are longer than a single line of code.externally
It can be difficult to understand, because it has so many dependencies.internally

Recommendation

Restrict the number of formal parameters for a method, according to the reason for the high number:

Several of the parameters are logically related, but are passed into the method separately. The
parameters that are logically related should be grouped together (see the 'Introduce Parameter Object'
refactoring on pp. 238-242 of [Fowler]).
The method has too many responsibilities. It should be broken into multiple methods (see the 'Extract
Method' refactoring on pp. 89-95 of [Fowler]), and each new method should be passed a subset of the
original parameters.
The method has redundant parameters that are not used. The two main reasons for this are: (1)
parameters were added for future extensibility but are never used; (2) the body of the method was
changed so that it no longer uses certain parameters, but the method signature was not correspondingly
updated. In both cases, the theoretically correct solution is to delete the unused parameters (see the
'Remove Parameter' refactoring on pp. 223-225 of [Fowler]), although you must do this cautiously if the
method is part of a published interface.

When a method is part of a published interface, one possible solution is to add a new, wrapper method to the
interface that has a tidier signature. Alternatively, you can publish a new version of the interface that has a better
design. Clearly, however, neither of these solutions is ideal, so you should take care to design interfaces the right
way from the start.

The practice of adding parameters for future extensibility is especially bad. It is confusing to other programmers,
who are uncertain what values they should pass in for these unnecessary parameters, and it adds unused code
that is potentially difficult to remove later.

Examples

In the following example, although the parameters are logically related, they are passed into the printAnnotation
method separately.

1 void printAnnotation(String annotationMessage, int annotationLine, int annotationOffset,
 2 int annotationLength) {
 3 System.out.println("Message: " + annotationMessage);
 4 System.out.println("Line: " + annotationLine);
 5 System.out.println("Offset: " + annotationOffset);
 6 System.out.println("Length: " + annotationLength);

In the following modified example, the parameters that are logically related are grouped together in a class, and
an instance of the class is passed into the method instead.

1 class Annotation {

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 252

 2 //...
3 }
4
5 void printAnnotation(Annotation annotation) {

 6 System.out.println("Message: " + annotation.getMessage());
 7 System.out.println("Line: " + annotation.getLine());
 8 System.out.println("Offset: " + annotation.getOffset());
 9 System.out.println("Length: " + annotation.getLength());

10 }

In the following example, the method has too many responsibilities, and so needs to be passedprintMembership

four arguments.

1 void printMembership(Set<Fellow> fellows, Set<Member> members,
 2 Set<Associate> associates, Set<Student> students) {
 3 for(Fellow f: fellows) {
 4 System.out.println(f);
 5 }
 6 for(Member m: members) {
 7 System.out.println(m);
 8 }
 9 for(Associate a: associates) {
 10 System.out.println(a);
 11 }
 12 for(Student s: students) {
 13 System.out.println(s);
 14 }

15 }
16
17 void printRecords() {

 18 //...
 19 printMembership(fellows, members, associates, students);

20 }

In the following modified example, has been broken into four methods. (For brevity, only oneprintMembership

method is shown.) As a result, each new method needs to be passed only one of the original four arguments.

1 void printFellows(Set<Fellow> fellows) {
 2 for(Fellow f: fellows) {
 3 System.out.println(f);
 4 }

5 }
6
7 //...
8
9 void printRecords() {

 10 //...
 11 printFellows(fellows);
 12 printMembers(members);
 13 printAssociates(associates);
 14 printStudents(students);

15 }

References

M. Fowler, . Addison-Wesley, 1999.Refactoring

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 253

Avoid too many complex statements in a block

Category: > Important Size

Description: A block that contains too many complex statements becomes unreadable and
unmaintainable.

Code has a tendency to become more complex over time. A method that is initially simple may need to be
extended to accommodate additional functionality or to address defects. Before long it becomes unreadable and
unmaintainable, with many complex statements nested within each other.

This rule applies to a block that contains a significant number of complex statements. Note that this is quite
different from just considering the number of statements in a block, because each complex statement is
potentially a candidate for being extracted to a new method as part of refactoring. For the purposes of this rule,
loops and switch statements are considered to be complex.

Recommendation

To make the code more understandable and less complex, identify logical units and extract them to new
methods. As a result, the top-level logic becomes clearer.

References

M. Fowler, . Addison-Wesley Professional, 1999.Refactoring: Improving the Design of Existing Code
W. C. Wake, . Addison-Wesley Professional, 2004.Refactoring Workbook

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 254

Review files that have been changed by many authors

Category: > Important Size

Description: A file that has been worked on by a high number of authors is a potential source of defects,
and may lack conceptual integrity. Ideally, the number of authors should be less than 4.

A file's Javadoc comment can include a tag that lists the authors who have worked on the file.

A file that has been changed by a large number of different authors is the product of many minds. New authors
working on the file may be less familiar with the design and implementation of the code than the original authors,
which can be a potential source of defects. Furthermore, if the code is not carefully maintained, it often results in
a lack of conceptual integrity.

Recommendation

There is clearly no way to reduce the number of authors that have worked on a file - it is impossible to rewrite
history. However, you should pay special attention in a code review to a file that has been worked on by a large
number of authors. The file may be need to be refactored or rewritten by an individual, experienced programmer.

References

F. P. Brooks Jr, , Chapter 4. Addison-Wesley, 1974.The Mythical Man-Month

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 255

Spring

Add 'description' elements to Spring bean definitions
A non-abstract parent Spring bean must not specify an abstract class
Avoid defining too many Spring beans in the same file
Avoid overriding a property with the same contents in a child Spring bean
Avoid using autowiring in Spring beans
Create a common parent bean for Spring beans that share properties
Ensure that each property in a Spring bean definition has a matching setter
Put 'import' statements before Spring bean definitions
Use 'id' instead of 'name' to name a Spring bean
Use a type name instead of an index number in a Spring 'constructor-arg' element
Use local references when referring to Spring beans in the same file
Use setter injection instead of constructor injection when using Spring
Use shortcut forms in Spring bean definitions

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 256

Add 'description' elements to Spring bean definitions

Category: > Important Spring

Description: Adding 'description' elements to a Spring XML bean definition file is good practice.

In a Spring XML bean definition file, adding a element to a element or the enclosing <description> <bean> <beans>

element to document the purpose of the bean specification is good practice. A element also has thedescription

advantage of making it easier for tools to detect and display the documentation for your bean specifications.

Recommendation

Add a element either in the element or its enclosing element.<description> <bean> <beans>

Example

The following example shows a Spring XML bean definition file that includes elements.<description>

1 <beans>
 2 <!--Using a description element makes it easier for tools to pick up
 documentation of the bean configuration-->3
 4 <description>
 5 This file configures the various service beans.
 6 </description>
 7
 8 <!--You can also put a description element in a bean-->
 9 <bean id="baseService" abstract="true">
 10 <description>
 11 This bean defines base properties common to the service beans
 12 </description>
 13 ...
 14 </bean>

15
 16 <bean id="shippingService"
 17 class="documentation.examples.spring.ShippingService"
 18 parent="baseService">
 19 ...
 20 </bean>
 21
 22 <bean id="orderService"
 23 class="documentation.examples.spring.OrderService"
 24 parent="baseService">
 25 ...
 26 </bean>

27 </beans>

References

ONJava: .Twelve Best Practices For Spring XML Configurations

http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=3

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 257

A non-abstract parent Spring bean must not specify an abstract class

Category: > Important Spring

Description: A non-abstract Spring bean that is a parent of other beans and specifies an abstract class
causes an error during bean instantiation.

A non-abstract Spring bean that is a parent of other beans must not specify an abstract class. Doing so causes
an error during bean instantiation.

Recommendation

Make sure that a non-abstract bean does not specify an abstract class, by doing one of the following:

Specify that the bean is also abstract by adding to the bean specification.abstract="true"

If possible, update the class that is specified by the bean so that it is not abstract.

You can also make the XML parent bean definition abstract and remove any references from it to any class (in
which case it becomes a pure bean template). Note that, like an abstract class, an abstract bean cannot be used
on its own and only provides property and constructor definitions to its children.

Example

In the following example, the bean is using an abstract class, , which causeswrongConnectionPool ConnectionPool

an error. Instead, the bean should be declared , as shown in the definition of .abstract connectionPool

1 <beans>
 2 <!--BAD: A non-abstract bean should use a concrete class.
 'ConnectionPool' is an abstract class.-->3
 4 <bean id="wrongConnectionPool"
 5 class="documentation.examples.spring.ConnectionPool"/>
 6 <bean id="appReqPool1" class="documentation.examples.spring.AppRequestConnectionPool"
 7 parent="wrongConnectionPool"/>

8
 9 <!--GOOD: A bean that specifies an abstract class should be declared 'abstract'.-->
 10 <bean id="connectionPool"
 11 class="documentation.examples.spring.ConnectionPool" abstract="true"/>
 12 <bean id="appReqPool2" class="documentation.examples.spring.AppRequestConnectionPool"
 13 parent="connectionPool"/>

14 </beans>

References

Spring Framework Reference Documentation 3.0: .3.7 Bean definition inheritance

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-child-bean-definitions

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 258

Avoid defining too many Spring beans in the same file

Category: > Important Spring

Description: Too many beans in a file can make the file difficult to understand and maintain.

Too many bean definitions in a single file can make the file difficult to understand and maintain. It is also an
indication that the architecture of the system is too tightly coupled and can be refactored.

Recommendation

Refactor related bean definitions into separate files, and compose them using the element.<import/>

Example

The following example shows a configuration file that imports two other configuration files. These two files were
created by refactoring a file that contained too many bean definitions.

1 <beans>
 2 <!--Compose configuration files by using the 'import' element.-->
 3 <import resource="services.xml"/>
 4 <import resource="resources/messageSource.xml"/>

5
 6 <bean id="bean1" class="..."/>
 7 <bean id="bean2" class="..."/>

8 </beans>

References

Spring Framework Reference Documentation 3.0: .3.2.2.1 Composing XML-based configuration metadata

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-xml-import

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 259

Avoid overriding a property with the same contents in a child Spring bean

Category: > Important Spring

Description: A bean property that overrides the same property in a parent bean, and has the same
contents, is useless.

A property in a child bean that overrides a property with the same name in its parent and has the same contents
is useless. This is because the bean inherits the property from its parent anyway.

Recommendation

If possible, remove the property in the child bean.

Example

In the following example, is defined in both the parent bean and the child bean. It should be removedregistry

from the child bean.

1 <beans>
 2 <bean id="baseShippingService" abstract="true">
 3 <property name="transactionHelper">
 4 <ref bean="transactionHelper"/>
 5 </property>
 6 <property name="dao">
 7 <ref bean="dao"/>
 8 </property>
 9 <property name="registry">
 10 <ref bean="basicRegistry"/>
 11 </property>
 12 </bean>

13
 14 <bean id="shippingService"
 15 class="documentation.examples.spring.ShippingService"
 16 parent="baseShippingService">
 17 <!--AVOID: This property is already defined with the same value in the parent bean.-->
 18 <property name="registry">
 19 <ref bean="basicRegistry"/>
 20 </property>
 21 <property name="shippingProvider" value="Federal Parcel Service"/>
 22 </bean>

23 </beans>

References

Spring Framework Reference Documentation 3.0: .3.7 Bean definition inheritance

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-child-bean-definitions

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 260

Avoid using autowiring in Spring beans

Category: > Important Spring

Description: Using autowiring in Spring beans may make it difficult to maintain large projects.

Using Spring autowiring can make it difficult to see what beans get passed to constructors or setters. The Spring
Framework Reference documentation cites the following disadvantages of autowiring:

Explicit dependencies in and settings always override autowiring. You cannotproperty constructor-arg

autowire so-called properties such as primitives, , and (and arrays of such simplesimple Strings Classes

properties). This limitation is by design.
Autowiring is less exact than explicit wiring. Although ... Spring is careful to avoid guessing in case of
ambiguity that might have unexpected results, the relationships between your Spring-managed objects are
no longer documented explicitly.
Wiring information may not be available to tools that may generate documentation from a Spring container.
Multiple bean definitions within the container may match the type specified by the setter method or
constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a problem.
However for dependencies that expect a single value, this ambiguity is not arbitrarily resolved. If no unique
bean definition is available, an exception is thrown.

Recommendation

The Spring Framework Reference documentation suggests the following ways to address problems with
autowired beans:

Abandon autowiring in favor of explicit wiring.
Avoid autowiring for a bean definition by setting its attributes to .autowire-candidate false

Designate a single bean definition as the primary candidate by setting the attribute of its primary <bean/>

element to true.
If you are using Java 5 or later, implement the more fine-grained control available with annotation-based
configuration.

Example

The following example shows a bean, , that is defined using autowiring, and an improvedautoWiredOrderService

version of the bean, , that is defined using explicit wiring.orderService

1 <!--AVOID: Using autowiring makes it difficult to see the dependencies of the bean-->
2 <bean id="autoWiredOrderService"

 3 class="documentation.examples.spring.OrderService"
 4 autowire="byName"/>

5
6 <!--GOOD: Explicitly specifying the properties of the bean documents its dependencies

 and makes the bean configuration easier to maintain-->7
8 <bean id="orderService"

 9 class="documentation.examples.spring.OrderService">
 10 <property name="DAO">
 11 <idref bean="dao"/>
 12 </property>

13 </bean>

References

Spring Framework Reference Documentation 3.0: .3.4.5.1 Limitations and disadvantages of autowiring
ONJava: .Twelve Best Practices For Spring XML Configurations

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-autowired-exceptions
http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=1

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 261

Create a common parent bean for Spring beans that share properties

Category: > Important Spring

Description: Beans that share similar properties exhibit unnecessary repetition in the bean definitions and
make the system's architecture more difficult to see.

Beans that share a considerable number of similar properties exhibit unnecessary repetition in the bean
definitions and make the system's architecture more difficult to see.

Recommendation

Try to move the properties that the bean definitions share to a common parent bean. This reduces repetition in
the bean definitions and gives a clearer picture of the system's architecture.

Example

The following example shows a configuration file that contains two beans that share several properties with the
same values.

1 <!--AVOID: 'shippingService' and 'orderService' share several properties with the same values-->
2 <bean id="shippingService" class="documentation.examples.spring.ShippingService">

 3 <property name="transactionHelper">
 4 <ref bean="transactionHelper"/>
 5 </property>
 6 <property name="dao">
 7 <ref bean="dao"/>
 8 </property>
 9 <property name="registry">
 10 <ref bean="basicRegistry"/>
 11 </property>
 12
 13 <property name="shippingProvider" value="Federal Parcel Service"/>

14 </bean>
15
16 <bean id="orderService" class="documentation.examples.spring.OrderService">

 17 <property name="transactionHelper">
 18 <ref bean="transactionHelper"/>
 19 </property>
 20 <property name="dao">
 21 <ref bean="dao"/>
 22 </property>
 23 <property name="registry">
 24 <ref bean="basicRegistry"/>
 25 </property>
 26
 27 <property name="orderReference" value="8675309"/>

28 </bean>

The following example shows how the shared properties have been moved into a parent bean, .baseService

1 <!--The 'baseService' bean contains common property definitions for services.-->
2 <bean id="baseService" abstract="true">

 3 <property name="transactionHelper">
 4 <ref bean="transactionHelper"/>
 5 </property>
 6 <property name="dao">
 7 <ref bean="dao"/>
 8 </property>
 9 <property name="registry">
 10 <ref bean="basicRegistry"/>

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 262

 10 <ref bean="basicRegistry"/>

 11 </property>
12 </bean>
13
14 <bean id="shippingService"

 15 class="documentation.examples.spring.ShippingService"
 16 parent="baseService">
 17 <property name="shippingProvider" value="Federal Parcel Service"/>

18 </bean>
19
20 <bean id="orderService"

 21 class="documentation.examples.spring.OrderService"
 22 parent="baseService">
 23 <property name="orderReference" value="8675309"/>

24 </bean>

References

Spring Framework Reference Documentation 3.0: .3.4.2.2 References to other beans (collaborators)

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-ref-element

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 263

Ensure that each property in a Spring bean definition has a matching setter

Category: > Important Spring

Description: Not declaring a setter for a property that is defined in a Spring XML file causes a compilation
error.

The absence of a matching setter method for a property that is defined in a Spring XML bean causes a validation
error when the project is compiled.

Recommendation

Ensure that there is a setter method in the bean file that matches the property name.

Example

The following example shows a bean file in which there is no match for the setter method that is in the class.

1 <bean id="contentService" class="documentation.examples.spring.ContentService">
 2 <!--BAD: The setter method in the class is 'setHelper', so this property
 does not match the setter method.-->3
 4 <property name="transactionHelper">
 5 <ref bean="transactionHelper"/>
 6 </property>

7 </bean>

This is the bean class.

1 // bean class
2 public class ContentService {

 3 private TransactionHelper helper;
4

 5 // This method does not match the property in the bean file.
 6 public void setHelper(TransactionHelper helper) {
 7 this.helper = helper;
 8 }

9 }

The property should instead have the name .transactionHelper helper

References

Spring Framework Reference Documentation 3.0: .3.4.1.2 Setter-based dependency injection

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 264

Put 'import' statements before Spring bean definitions

Category: > Important Spring

Description: Putting 'import' statements before bean definitions in a Spring bean configuration file makes
it easier to immediately see all the file's dependencies.

Putting statements at the top of Spring XML bean definition files is good practice because they give aimport

quick summary of the file's dependencies, and can even be used to document the general architecture of a
system.

Recommendation

Make sure that all statements are at the top of the section of a Spring XML bean definition file.import <beans>

Example

The following example shows a section of a Spring XML bean definition file in which an statement<beans> import

is in the middle, and a section in which all the statements are at the top.<beans> import

1 <beans>
 2 <import resource="services.xml"/>
 3
 4 <bean id="bean1" class="..."/>
 5 <bean id="bean2" class="..."/>
 6
 7 <!--AVOID: Imports in the middle of a bean configuration make it difficult
 to immediately determine the dependencies of the configuration-->8
 9 <import resource="resources/messageSource.xml"/>

10
 11 <bean id="bean3" class="..."/>
 12 <bean id="bean4" class="..."/>

13 </beans>
14
15
16 <beans>

 17 <!--GOOD: Having the imports at the top immediately gives an idea of
 what the dependencies of the configuration are-->18
 19 <import resource="services.xml"/>
 20 <import resource="resources/messageSource.xml"/>
 21
 22 <bean id="bean1" class="..."/>
 23 <bean id="bean2" class="..."/>
 24 <bean id="bean3" class="..."/>
 25 <bean id="bean4" class="..."/>

26 </beans>

References

Spring Framework Reference Documentation 3.0: .3.2.2.1 Composing XML-based configuration metadata

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-xml-import

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 265

Use 'id' instead of 'name' to name a Spring bean

Category: > Important Spring

Description: Using 'id' instead of 'name' to name a Spring bean enables the XML parser to perform
additional checks.

To name a Spring bean, it is best to use the attribute instead of the attribute. Using the attributeid name id

enables the XML parser to perform additional checks (for example, checking if the in a attribute is anid ref

actual of an XML element).id

Recommendation

Use the attribute instead of the attribute when naming a bean.id name

Example

In the following example, the bean is shown using the attribute, which allows a typo to go undetecteddao name

because the XML parser does not check . In contrast, using the attribute allows the XML parser to catchname id

the typo.

1 <!--AVOID: Using the 'name' attribute disables checking of bean references at XML parse time-->
2 <bean name="dao" class="documentation.examples.spring.DAO"/>
3
4 <bean id="orderService" class="documentation.examples.spring.OrderService">

 5 <!--The XML parser cannot catch this typo-->
 6 <property name="dao" ref="da0"/>

7 </bean>
8
9
10 <!--GOOD: Using the 'id' attribute enables checking of bean references at XML parse time-->
11 <bean id="dao" class="documentation.examples.spring.DAO"/>
12
13 <bean id="orderService" class="documentation.examples.spring.OrderService">

 14 <!--The XML parser can catch this typo-->
 15 <property name="dao" ref="da0"/>

16 </bean>

References

Spring Framework Reference Documentation 3.0: .3.3.1 Naming beans
W3C: .3.3.1 Attribute Types

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-beanname
http://www.w3.org/TR/REC-xml/#sec-attribute-types

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 266

Use a type name instead of an index number in a Spring 'constructor-arg' element

Category: > Important Spring

Description: Using a type name instead of an index number in a Spring 'constructor-arg' element
improves readability.

Using type matching instead of index matching in a Spring element produces a more readableconstructor-arg

bean definition and is less vulnerable to being broken by a change to the constructor of the bean's underlying
class. Index matching should be used only if type matching is not sufficient to remove ambiguity in the constructor
arguments.

Recommendation

The bean definition's elements should use type matching instead of index matching.constructor-arg

Example

The following example shows a bean, , whose elements use index matching,billingService1 constructor-arg

and an improved version of the bean, , whose elements use type matching.billingService2 constructor-arg

1 <!--AVOID: Using explicit constructor indices makes the bean configuration
 vulnerable to changes to the constructor-->2

3 <bean id="billingService1" class="documentation.examples.spring.BillingService">
 4 <constructor-arg index="0" value="John Doe"/>
 5 <constructor-arg index="1" ref="dao"/>

6 </bean>
7
8 <!--GOOD: Using type matching makes the bean configuration more robust to changes in

 the constructor-->9
10 <bean id="billingService2" class="documentation.examples.spring.BillingService">

 11 <constructor-arg ref="dao"/>
 12 <constructor-arg type="java.lang.String" value="Jane Doe"/>

13 </bean>

References

Spring Framework Reference Documentation 3.0: .3.4.1.1 Constructor-based dependency injection
ONJava: .Twelve Best Practices For Spring XML Configurations

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-constructor-injection
http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=2

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 267

Use local references when referring to Spring beans in the same file

Category: > Important Spring

Description: Using local references when referring to Spring beans in the same file allows reference
errors to be detected during XML parsing.

If at all possible, refer to Spring beans in the same XML file using local references, that is <idref
. This requires that the bean being referenced is in the same XML file, and is named usinglocal="targetBean">

the attribute. Using local references has the advantage of allowing reference errors to be detected during XMLid

parsing, instead of during deployment or instantiation.

From the Spring Framework Reference documentation on elements:idref

[Using the tag in a element] is preferable to [using the bean name in theidref property

property's attribute], because using the tag allows the container to validate atvalue idref

deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the [] property of the client bean.name

Typos are only discovered (with most likely fatal results) when the client bean is actually
instantiated. If the client bean is a prototype bean, this typo and the resulting exception may only
be discovered long after the container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean ,id

you can use the attribute, which allows the XML parser itself to validate the bean local id

earlier, at XML document parse time.

Recommendation

Use a local when referring to beans in the same XML file. This allows errors to be detected earlier, at XMLidref

parse time rather than during instantiation.

Example

In the following example, the bean is shown using the element, which cannot be checked byshippingService ref

the XML parser. The bean is shown using the element, which allows the XML parser to findorderService idref

any errors at parse time.

1 <beans>
 2 <bean id="shippingService" class="documentation.examples.spring.ShippingService">
 3 <!--AVOID: This form of reference cannot be checked by the XML parser-->
 4 <property name="dao">
 5 <ref bean="dao"/>
 6 </property>
 7 </bean>
 8
 9 <bean id="orderService" class="documentation.examples.spring.OrderService">
 10 <!--GOOD: This form of reference allows the XML parser to find any errors at parse time-->
 11 <property name="dao">
 12 <idref local="dao"/>
 13 </property>
 14 </bean>
 15
 16 <bean id="dao" class="documentation.examples.spring.DAO"/>

17 </beans>

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 268

References

Spring Framework Reference Documentation 3.0: .3.4.2.1 Straight values (primitives, Strings, and so on)

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-value-element

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 269

Use setter injection instead of constructor injection when using Spring

Category: > Important Spring

Description: When using the Spring Framework, using setter injection instead of constructor injection is
more flexible, especially when several properties are optional.

When you use the Spring Framework, using setter injection instead of constructor injection is more flexible,
particularly for Spring beans with a large number of optional properties. Constructor injection should be used only
on required bean properties; using constructor injection on optional bean properties requires a large number of
constructors to handle different combinations of properties.

Although the generally accepted best practice is to use constructor injection for mandatory dependencies, and
setter injection for optional dependencies, the annotation allows you to forgo constructor injection@Required

completely. Using the annotation on a setter method makes the framework check that a dependency is@Required

injected using that method.

Recommendation

Use setter injection in bean configurations, marking required properties with the annotation. It makes it@Required

easier to accommodate a large number of optional properties, and makes the bean more flexible by allowing for
re-injection of dependencies.

Example

The following example shows a bean that is defined using constructor injection. The bean configuration is
followed by the class definition.

1 <!--AVOID: Using constructor args for optional parameters requires one constructor per combination
of properties. This leads to a large number of constructors in the bean class.-->2

3 <bean id="chart1" class="documentation.examples.spring.WrongChartMaker">
 4 <constructor-arg ref="customTrend"/>
 5 <constructor-arg ref="customAxis"/>

6 </bean>

1 // Class for bean 'chart1'
2 public class WrongChartMaker {

 3 private AxisRenderer axisRenderer = new DefaultAxisRenderer();
 4 private TrendRenderer trendRenderer = new DefaultTrendRenderer();
 5
 6 public WrongChartMaker() {}

7
 8 // Each combination of the optional parameters must be represented by a constructor.
 9 public WrongChartMaker(AxisRenderer customAxisRenderer) {
 10 this.axisRenderer = customAxisRenderer;
 11 }
 12
 13 public WrongChartMaker(TrendRenderer customTrendRenderer) {
 14 this.trendRenderer = customTrendRenderer;
 15 }
 16
 17 public WrongChartMaker(AxisRenderer customAxisRenderer,
 18 TrendRenderer customTrendRenderer) {
 19 this.axisRenderer = customAxisRenderer;
 20 this.trendRenderer = customTrendRenderer;
 21 }

22 }

The following example shows how the same bean can be defined using setter injection instead. Again, the bean

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 270

configuration is followed by the class definition.

1 <!--GOOD: Using setter injection requires only one setter for each property.-->
2 <bean id="chart2" class="documentation.examples.spring.ChartMaker">

 3 <property name="axisRenderer" ref="customAxis"/>
4 </bean>

1 // Class for bean 'chart2'
2 public class ChartMaker {

 3 private AxisRenderer axisRenderer = new DefaultAxisRenderer();
 4 private TrendRenderer trendRenderer = new DefaultTrendRenderer();
 5
 6 public ChartMaker() {}
 7
 8 public void setAxisRenderer(AxisRenderer axisRenderer) {
 9 this.axisRenderer = axisRenderer;
 10 }
 11
 12 public void setTrendRenderer(TrendRenderer trendRenderer) {
 13 this.trendRenderer = trendRenderer;
 14 }

15 }

References

Martin Fowler: .Inversion of Control Containers and the Dependency Injection pattern
ONJava: .Twelve Best Practices for Spring XML Configurations
Spring Framework Reference Documentation 3.0: , 3.4.1.1 Constructor-based dependency injection 3.4.1.2

.Setter-based dependency injection
SpringSource: .Setter injection versus constructor injection and the use of @Required

http://martinfowler.com/articles/injection.html
http://www.onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=3
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-constructor-injection
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection
http://blog.springsource.org/2007/07/11/setter-injection-versus-constructor-injection-and-the-use-of-required/

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 271

Use shortcut forms in Spring bean definitions

Category: > Important Spring

Description: Using shortcut forms may make a Spring XML configuration file less cluttered.

Shortcut forms, introduced in Spring 1.2, allow nested elements to instead be defined as attributes in thevalue

enclosing entry. This leads to shorter XML bean configurations that are easier to read.property

Recommendation

When possible, use the shortcut form for defining bean property values.

Note that this does apply to elements, which are the preferred form of referring to another bean. Thesenot idref

do not have a shortcut form that can still be checked by the XML parser.

Example

The following example shows how a bean that is defined using shortcut forms is more concise than the same
bean defined using nested elements.value

1 <!--AVOID: Using nested 'value' elements can make the configuration file difficult to read-->
2 <bean id="serviceRegistry" class="documentation.examples.spring.ServiceRegistry">

 3 <constructor-arg type="java.lang.String">
 4 <value>main_service_registry</value>
 5 </constructor-arg>
 6 <property name="description">
 7 <value>Top-level registry for services</value>
 8 </property>
 9 <property name="serviceMap">
 10 <map>
 11 <entry>
 12 <key>
 13 <value>orderService</value>
 14 </key>
 15 <value>com.foo.bar.OrderService</value>
 16 </entry>
 17 <entry>
 18 <key>
 19 <value>billingService</value>
 20 </key>
 21 <value>com.foo.bar.BillingService</value>
 22 </entry>
 23 </map>
 24 </property>

25 </bean>
26
27
28 <!--GOOD: Shortcut forms (Spring 1.2) result in more concise bean definitions-->
29 <bean id="serviceRegistry" class="documentation.examples.spring.ServiceRegistry">

 30 <constructor-arg type="java.lang.String" value="main_service_registry"/>
 31 <property name="description" value="Top-level registry for services"/>
 32 <property name="serviceMap">
 33 <map>
 34 <entry key="orderService" value="com.foo.bar.OrderService"/>
 35 <entry key="billingService" value="com.foo.bar.BillingService"/>
 36 </map>
 37 </property>

38 </bean>

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 272

References

ONJava: .Twelve Best Practices for Spring XML Configurations
Spring Framework Reference Documentation 3.0: .3.4.2.1 Straight values (primitives, Strings, and so on)

http://www.onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=1
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-value-element

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 273

Strings (1)

Avoid calling 'toString' on a string
Avoid calling 'toUpperCase()' or 'toLowerCase()' without specifying the locale

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 274

Avoid calling 'toString' on a string

Category: > Important Strings (1)

Description: Calling 'toString' on a string is redundant.

There is no need to call on a because it just returns the object itself. From the Java APItoString String

Specification entry for :String.toString()

 public String toString()

This object (which is already a string!) is itself returned.

Recommendation

Do not call on a object.toString String

Example

The following example shows an unnecessary call to on the string .toString name

1 public static void main(String args[]) {
 2 String name = "John Doe";
 3
 4 // BAD: Unnecessary call to 'toString' on 'name'
 5 System.out.println("Hi, my name is " + name.toString());
 6
 7 // GOOD: No call to 'toString' on 'name'
 8 System.out.println("Hi, my name is " + name);

9 }

References

Java 6 API Specification: .String.toString()

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#toString()

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 275

Avoid calling 'toUpperCase()' or 'toLowerCase()' without specifying the locale

Category: > Important Strings (1)

Description: Calling 'String.toUpperCase()' or 'String.toLowerCase()' without specifying the locale may
cause unexpected results for certain default locales.

The parameterless versions of and use the default locale of the JavaString.toUpperCase() String.toLowerCase()

Virtual Machine when transforming strings. This can cause unexpected behavior for certain locales.

Recommendation

Use the corresponding methods with explicit locale parameters to ensure that the results are consistent across all
locales. For example:

System.out.println("I".toLowerCase(java.util.Locale.ENGLISH));

prints , regardless of the default locale.i

Example

In the following example, the calls to the parameterless functions may return different strings for different locales.
For example, if the default locale is ENGLISH, the function converts a capital to ; if the defaulttoLowerCase() I i

locale is TURKISH, the function converts a capital to the Unicode Character "Latin small lettertoLowerCase() I

dotless i" (U+0131) ().Turkish HTML Codes, Unicode Hexadecimal & HTML Names

To ensure that an English string is returned, regardless of the default locale, the example shows how to call
 and pass as the argument. (This assumes that the text is English. If the text istoLowerCase locale.ENGLISH

Turkish, you should pass as the argument.)locale.TURKISH

1 public static void main(String args[]) {
 2 String phrase = "I miss my home in Mississippi.";

3
 4 // AVOID: Calling 'toLowerCase()' or 'toUpperCase()'
 5 // produces different results depending on what the default locale is.
 6 System.out.println(phrase.toUpperCase());
 7 System.out.println(phrase.toLowerCase());

8
 9 // GOOD: Explicitly setting the locale when calling 'toLowerCase()' or
 10 // 'toUpperCase()' ensures that the resulting string is
 11 // English, regardless of the default locale.
 12 System.out.println(phrase.toLowerCase(Locale.ENGLISH));
 13 System.out.println(phrase.toUpperCase(Locale.ENGLISH));

14 }

References

Java API Documentation: .String.toUpperCase()

http://character-code.com/turkish-html-codes.php
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase()

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 276

Swing

Avoid calling Swing methods from a thread other than the event-dispatching thread
Ensure that event handler overrides have exactly the right name

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 277

Avoid calling Swing methods from a thread other than the event-dispatching thread

Category: > Important Swing

Description: Calling Swing methods from a thread other than the event-dispatching thread may result in
multi-threading errors.

Because Swing components are not thread-safe (that is, they do not support concurrent access from multiple
threads), Swing has a rule that states that method calls on Swing components that have been (seerealized
below) must be made from a special thread known as the . Failure to observe this ruleevent-dispatching thread
may result in multiple threads accessing a Swing component concurrently, with the potential for deadlocks, race
conditions and other errors related to multi-threading.

A component is considered if its method has been, or could be, called at this point. Realization isrealized paint

triggered according to the following rules:

A top-level window is realized if , or is called on it.setVisible(true) show pack

Realizing a container realizes the components it contains.

There are a few exceptions to the rule. These are documented more fully in [The Swing Connection] but the key
exceptions are:

It is safe to call the , and methods on a Swing component from any thread.repaint revalidate invalidate

It is safe to add and remove listeners from any thread. Therefore, any method of the form or add*Listener

 is thread-safe.remove*Listener

Recommendation

Ensure that method calls on Swing components are made from the event-dispatching thread. If you need to call a
method on a Swing component from another thread, you must do so using the event-dispatching thread. Swing
provides a class that you can use to ask the event-dispatching thread to run arbitrary code onSwingUtilities

your components, by calling one of two methods. Each method takes a as its only argument:Runnable

 asks the event-dispatching thread to run some code and then immediatelySwingUtilities.invokeLater

returns (that is, it is non-blocking). The code is run at some indeterminate time in the future, but the thread
that calls does not wait for it.invokeLater

 asks the event-dispatching thread to run some code and then waits for it toSwingUtilities.invokeAndWait

complete (that is, it is blocking).

Example

In the following example, there is a call from the main thread to a method, , on the object aftersetTitle MyFrame

the object has been realized by the call. This represents an unsafe call to a Swing method fromsetVisible(true)

a thread other than the event-dispatching thread.

1 class MyFrame extends JFrame {
 2 public MyFrame() {
 3 setSize(640, 480);
 4 setTitle("BrokenSwing");
 5 }

6 }
7
8 public class BrokenSwing {

 9 private static void doStuff(MyFrame frame) {
 10 // BAD: Direct call to a Swing component after it has been realized
 11 frame.setTitle("Title");
 12 }

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 278

 12 }

13
 14 public static void main(String[] args) {
 15 MyFrame frame = new MyFrame();
 16 frame.setVisible(true);
 17 doStuff(frame);
 18 }

19 }

In the following modified example, the call to is instead called from within a call to .setTitle invokeLater

1 class MyFrame extends JFrame {
 2 public MyFrame() {
 3 setSize(640, 480);
 4 setTitle("BrokenSwing");
 5 }

6 }
7
8 public class GoodSwing {

 9 private static void doStuff(final MyFrame frame) {
 10 SwingUtilities.invokeLater(new Runnable() {
 11 public void run() {
 12 // GOOD: Call to Swing component made via the
 13 // event-dispatching thread using 'invokeLater'
 14 frame.setTitle("Title");
 15 }
 16 });
 17 }

18
 19 public static void main(String[] args) {
 20 MyFrame frame = new MyFrame();
 21 frame.setVisible(true);
 22 doStuff(frame);
 23 }

24 }

References

D. Flanagan, , p.28. O'Reilly, 1999.Java Foundation Classes in a Nutshell
Java Developer's Journal: .Building Thread-Safe GUIs with Swing
The Java Tutorials: .Concurrency in Swing
The Swing Connection: .Threads and Swing

http://www2.sys-con.com/itsg/virtualcd/java/archives/0605/ford/index.html
http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/swingConnect/archive/tech_topics_arch/threads/threads.html

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 279

Ensure that event handler overrides have exactly the right name

Category: > Important Swing

Description: In a class that extends a Swing or Abstract Window Toolkit event adapter, an event handler
that does not have exactly the same name as the event handler that it overrides means that the overridden
event handler is not called.

Event adapters in Swing (and Abstract Window Toolkit) provide a convenient way for programmers to implement
event listeners. However, care must be taken to get the names of the overridden methods right, or the event
handlers will not be called.

In Depth

The event listener interfaces in Swing (and Abstract Window Toolkit) have many methods. For example,
 is defined as follows:java.awt.event.MouseListener

1 public interface MouseListener extends EventListener {
 2 public abstract void mouseClicked(MouseEvent);
 3 public abstract void mousePressed(MouseEvent);
 4 public abstract void mouseReleased(MouseEvent);
 5 public abstract void mouseEntered(MouseEvent);
 6 public abstract void mouseExited(MouseEvent);

7 }

The large number of methods can make such interfaces lengthy and tedious to implement, especially because it
is rare that all of the methods need to be overridden. It is much more common that you need to override only one
method, for example the event.mouseClicked

For this reason, Swing supplies classes that provide default, blank implementations of interface methods.adapter
An example is , which provides default implementations for the methods in , MouseAdapter MouseListener

 and . (Note that an adapter often implements multiple interfaces to avoidMouseWheelListener MouseMotionListener

a large number of small adapter classes.) This makes it easy for programmers to implement just the methods
they need from a given interface.

Unfortunately, adapter classes are also a source of potential defects. Because the annotation is not@Override

compulsory, it is very easy for programmers not to use it and then mistype the name of the method. This
introduces a new method rather than implementing the relevant event handler.

Recommendation

Ensure that any overriding methods have exactly the same name as the overridden method.

Example

In the following example, the programmer has tried to implement the function but has misspelled themouseClicked

function name. This makes the function inoperable but the programmer gets no warning about this from the
compiler.

1 add(new MouseAdapter() {
 2 public void mouseClickd(MouseEvent e) {
 3 // ...
 4 }

5 });

In the following modified example, the function name is spelled correctly. It is also preceded by the @Override
annotation, which will cause the compiler to display an error if there is not a function of the same name to be

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 280

overridden.

1 add(new MouseAdapter() {
 2 @Override
 3 public void mouseClicked(MouseEvent e) {
 4 // ...
 5 }

6 });

References

D. Flanagan, , Chapter 26. O'Reilly, 1999.Java Foundation Classes in a Nutshell
Java Platform, Standard Edition 7, API Specification: .Annotation Type Override
The Java Tutorials: .Event Adapters

http://docs.oracle.com/javase/7/docs/api/java/lang/Override.html
http://docs.oracle.com/javase/tutorial/uiswing/events/generalrules.html#eventAdapters

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 281

Types (2)

Avoid naming a type variable the same as another type that is in scope
Avoid trying to extend a final type using a wildcard
Do not call a varargs method with an ambiguous argument

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 282

Avoid naming a type variable the same as another type that is in scope

Category: > Important Types (2)

Description: A type variable with the same name as another type that is in scope can cause the two types
to be confused.

Type shadowing occurs if two types have the same name but one is defined within the scope of the other. This
can arise if you introduce a type variable with the same name as an imported class.

Type shadowing may cause the two types to be confused, which can lead to various problems.

Recommendation

Name the type variable so that its name does not clash with the imported class.

Example

In the following example, the type is imported at the top of the file, but the class isjava.util.Map.Entry Mapping

defined with two type variables, and . Uses of within the class refer to the type variable,Key Entry Entry Mapping

and not the imported interface. The type variable therefore shadows .Map.Entry

1 import java.util.Map;
2 import java.util.Map.Entry;
3
4 class Mapping<Key, Entry> // The type variable 'Entry' shadows the imported interface 'Entry'.
5 {

 6 // ...
7 }

To fix the code, the type variable on line 4 should be renamed.Entry

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: .6.4 Shadowing and Obscuring

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 283

Avoid trying to extend a final type using a wildcard

Category: > Important Types (2)

Description: If 'C' is a final class, a type bound such as '? extends C' is confusing because it implies that
'C' has subclasses, but a final class has no subclasses.

A type wildcard with an clause (for example) implicitly suggests that a type (in this caseextends ? extends String

) has subclasses. If the type in the clause is final, the code is confusing because a final classString extends

cannot have any subclasses. The only type that satisfies is .? extends String String

Recommendation

To make the code more readable, omit the wildcard to leave just the final type.

Example

In the following example, a wildcard is used to refer to any type that is a subclass of .String

1 class Printer
2 {

 3 void print(List<? extends String> strings) { // Unnecessary wildcard
 4 for (String s : strings)
 5 System.out.println(s);
 6 }

7 }

However, because is declared , it does not have any subclasses. Therefore, it is clearer to replace String final

 with .? extends String String

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , .4.5.1 Type Arguments and Wildcards 8.1.1.2 final Classes

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.5.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.1.2

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 284

Do not call a varargs method with an ambiguous argument

Category: > Important Types (2)

Description: Calling a varargs method where is is unclear whether the arguments should be interpreted
as a list of arguments or as a single argument, may lead to compiler-dependent behavior.

A variable arity method, commonly known as a varargs method, may be called with different numbers of
arguments. For example, the method may be called in all of the following ways:sum(int... values)

sum()

sum(1)

sum(1,2,3)

sum(new int[] { 1, 2, 3 })

When a method is called with an argument that is neither nor , but the argument can be cast asfoo(T... x) T T[]

either, the choice of which type the argument is cast as is compiler-dependent.

Recommendation

When a variable arity method, for example , is called with a single argument (for example), them(T... ts) m(arg)

type of the argument should be either or (insert a cast if necessary).T T[]

Example

In the following example, the calls to do not pass an argument of the same type as the parameter of length

, which is or an array of . Therefore, when the program is compiled with javac, the output is:length Object Object

3
2

When the program is compiled with a different compiler, for example the default compiler for some versions of
Eclipse, the output may be:

3
1

1 class InexactVarArg
2 {

 3 private static void length(Object... objects) {
 4 System.out.println(objects.length);
 5 }

6
 7 public static void main(String[] args) {
 8 String[] words = { "apple", "banana", "cherry" };
 9 String[][] lists = { words, words };
 10 length(words); // BAD: Argument does not clarify
 11 length(lists); // which parameter type is used.
 12 }

13 }

To fix the code, should be replaced by either of the following:length(words)

length((Object) words)

length((Object[]) words)

Similarly, should be replaced by one of the following:length(lists)

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 285

length((Object) lists)

length((Object[]) lists)

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification: , .8.4.1 Formal Parameters 15.12.4.2 Evaluate Arguments

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12.4.2

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 286

Useless Code

Avoid futile assignments to a local variable
Avoid local variables that are never read
Avoid redundant types
Avoid unnecessary 'import' statements
Avoid unnecessary casts
Avoid unused fields
Avoid unused labels
Ensure that fields are explicitly initialized
Ensure that interface methods are compatible with 'java.lang.Object'

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 287

Avoid futile assignments to a local variable

Category: > Important Useless Code

Description: An assignment to a local variable that is not used before a further assignment is made has
no effect.

A value is assigned to a local variable, but whenever the variable is subsequently read, there has been at least
one other assignment to that variable. This means that the original assignment is suspect, because the state of
the local variable that it creates is never used.

Recommendation

Ensure that you check the control and data flow in the method carefully. If a value is really not needed, consider
omitting the assignment. Be careful, though: if the right-hand side has a side-effect (like performing a method
call), it is important to keep this to preserve the overall behavior.

Example

In the following example, the value assigned to on line 5 is always overwritten (line 6) before being readresult

(line 7). This is a strong indicator that there is something wrong. By examining the code, we can see that the loop
in lines 3-5 seems to be left over from an old way of storing the list of persons, and line 6 represents the new (and
better-performing) way. Consequently, we can delete lines 3-5 while preserving behavior.

1 Person find(String name) {
 2 Person result;
 3 for (Person p : people.values())
 4 if (p.getName().equals(name))
 5 result = p; // Redundant assignment
 6 result = people.get(name);
 7 return result;

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 288

Avoid local variables that are never read

Category: > Important Useless Code

Description: A local variable that is never read is redundant.

A local variable that is never read is useless.

As a matter of good practice, there should be no unused or useless code. It makes the program more difficult to
understand and maintain, and can waste a programmer's time.

Recommendation

This rule applies to variables that are never used as well as variables that are only written to but never read. In
both cases, ensure that no operations are missing that would use the local variable. If appropriate, simply remove
the declaration. However, if the variable is written to, ensure that any side-effects in the assignments are
retained. (For further details, see the example.)

Example

In the following example, the local variable is assigned a value but never read. In the fixed version ofoldQuantity

the example, the variable is removed but the call to in the assignment is retained.items.put

1 // Version containing unread local variable
2 public class Cart {

 3 private Map<Item, Integer> items = ...;
 4 public void add(Item i) {
 5 Integer quantity = items.get(i);
 6 if (quantity = null)
 7 quantity = 1;
 8 else
 9 quantity++;
 10 Integer oldQuantity = items.put(i, quantity); // AVOID: Unread local variable
 11 }

12 }
13
14 // Version with unread local variable removed
15 public class Cart {

 16 private Map<Item, Integer> items = ...;
 17 public void add(Item i) {
 18 Integer quantity = items.get(i);
 19 if (quantity = null)
 20 quantity = 1;
 21 else
 22 quantity++;
 23 items.put(i, quantity);
 24 }

25 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 289

Avoid redundant types

Category: > Important Useless Code

Description: A non-public class or interface that is not used anywhere in the program wastes programmer
resources.

A non-public class or interface that is not used anywhere in the program may cause a programmer to waste time
and effort maintaining and documenting it.

Recommendation

Ensure that redundant types are removed from the program.

References

Wikipedia: .Unreachable code

http://en.wikipedia.org/wiki/Unreachable_code

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 290

Avoid unnecessary 'import' statements

Category: > Important Useless Code

Description: A redundant 'import' statement introduces unnecessary and undesirable dependencies.

An statement that is not necessary (because no part of the file that it is in uses any imported type) shouldimport

be avoided. Although importing too many types does not affect performance, redundant statementsimport

introduce unnecessary and undesirable dependencies in the code. If an imported type is renamed or deleted, the
source code cannot be compiled because the statement cannot be resolved.import

Unnecessary statements are often an indication of incomplete refactoring.import

Recommendation

Avoid including an statement that is not needed. Many modern IDEs have automated support for doingimport

this, typically under the name 'Organize imports'. This sorts the statements and removes any that are notimport

used, and it is good practice to run such a command before every commit.

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 291

Avoid unnecessary casts

Category: > Important Useless Code

Description: Casting an object to its own type is unnecessary.

A cast is unnecessary if the type of the operand is already the same as the type that is being cast to.

Recommendation

Avoid including unnecessary casts.

Example

In the following example, casting to an is not necessary. It is already an .i Integer Integer

1 public class UnnecessaryCast {
 2 public static void main(String[] args) {
 3 Integer i = 23;
 4 Integer j = (Integer)i; // AVOID: Redundant cast
 5 }

6 }

To fix the code, delete on the right-hand side of the assignment on line 4.(Integer)

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 292

Avoid unused fields

Category: > Important Useless Code

Description: A field that is never used is probably unnecessary.

A field that is neither public nor protected and never accessed is typically a leftover from old refactorings or a sign
of incomplete or pending code changes.

This rule does not apply to a field in a serializable class because it may be accessed during serialization and
deserialization.

Recommendation

If an unused field is a leftover from old refactorings, you should just remove it. If it indicates incomplete or
pending code changes, finish making the changes and remove the field if it is not needed.

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 293

Avoid unused labels

Category: > Important Useless Code

Description: An unused label for a loop or 'switch' statement is either redundant or indicates incorrect
'break' or 'continue' statements.

Loop and statements can be labeled. These labels can serve as targets for or statements,switch break continue

to specify which loop or statement they refer to.switch

Apart from serving as such jump targets, the labels have no effect on program behavior, which means that having
an unused label is suspicious.

Recommendation

If the label is used to document the intended behavior of a loop or statement, remove it. It is better to useswitch

comments for this purpose. However, an unused label may indicate that something is wrong: that some of the
nested or statements should be using the label. In this case, the current control flow is probablybreak continue

wrong, and you should adjust some jumps to use the label after checking the desired behavior.

Example

The following example uses a loop and a nested loop to check whether any of the currently active shopping carts
contains a particular item. On line 4, the label is unused. Inspecting the code, we can see that the carts: break

statement on line 10 is inefficient because it only breaks out of the nested loop. It could in fact break out of the
outer loop, which should improve performance in common cases. By changing the statement on line 10 to read

, the label is no longer unused and we improve the code.break carts;

1 public class WebStore {
 2 public boolean itemIsBeingBought(Item item) {
 3 boolean found = false;
 4 carts: // AVOID: Unused label
 5 for (int i = 0; i < carts.size(); i++) {
 6 Cart cart = carts.get(i);
 7 for (int j = 0; j < cart.numItems(); j++) {
 8 if (item.equals(cart.getItem(j))) {
 9 found = true;
 10 break;
 11 }
 12 }
 13 }
 14 return found;
 15 }

16 }

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 294

Ensure that fields are explicitly initialized

Category: > Important Useless Code

Description: A field that is never assigned a value (except possibly 'null') just returns the default value
when it is read.

It is good practice to initialize every field in a constructor explicitly. A field that is never assigned any value
(except possibly) just returns the default value when it is read, or throws a .null NullPointerException

Recommendation

A field whose value is always (or the corresponding default value for primitive types, for example) is notnull 0

particularly useful. Ensure that the code contains an assignment or initialization for each field. To help satisfy this
rule, it is good practice to explicitly initialize every field in the constructor, even if the default value is acceptable.

If the field is genuinely never expected to hold a non-default value, check the statements that read the field and
ensure that they are not making incorrect assumptions about the value of the field. Consider completely removing
the field and rewriting the statements that read it, as appropriate.

Example

In the following example, the private field is not initialized in the constructor (and thus is implicitly set to name null

), but there is a getter method to access it.

1 class Person {
 2 private String name;
 3 private int age;

4
 5 public Person(String name, int age) {
 6 this.age = age;
 7 }

8
 9 public String getName() {
 10 return name;
 11 }

12
 13 public int getAge() {
 14 return age;
 15 }

16 }

Therefore, the following code throws a :NullPointerException

1 Person p = new Person("Arthur Dent", 30);
2 int l = p.getName().length();

To fix the code, should be initialized in the constructor by adding the following line: name this.name = name;

Important rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 295

Ensure that interface methods are compatible with 'java.lang.Object'

Category: > Important Useless Code

Description: An interface method that is incompatible with a protected method on 'java.lang.Object'
means that the interface cannot be implemented.

An interface that contains methods whose return types clash with protected methods on canjava.lang.Object

never be implemented, because methods cannot be overloaded based simply on their return type.

Recommendation

If the interface is useful, name methods so that they do not clash with methods in . Otherwise you shouldObject

delete the interface.

Example

In the following example, the interface is useless because the method must return type :I clone java.lang.Object

1 interface I {
 2 int clone();

3 }
4
5 class C implements I {

 6 public int clone() {
 7 return 23;
 8 }

9 }

Any attempt to implement the interface produces an error:

InterfaceCannotBeImplemented.java:6: clone() in C cannot override
 clone() in java.lang.Object; attempting to use incompatible return
 type
found : int
required: java.lang.Object
 public int clone() {
 ^
1 error

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Language Specification, Third Edition: .9.2 Interface Members

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se5.0/html/interfaces.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 296

Advisory

Rules in this category represent good practice. Violations of these rules are allowed but not recommended.

Rule types:

Declarations (1)
Deprecated Code
Documentation
Java Objects (1)
Naming (1)
Statements
Types (1)

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 297

Declarations (1)

Avoid implicit imports
Declare immutable fields 'final'
Do not make mutable fields public
Use '@Override' annotation when overriding a method

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 298

Avoid implicit imports

Category: > Advisory Declarations (1)

Description: An implicit import obscures the dependencies of a file and may cause confusing
compile-time errors.

Imports can be categorized as (for example) or (also known asexplicit import java.util.List; implicit
'on-demand', for example):import java.util.*;

Implicit imports give access to all visible types in the type (or package) that precedes the ".*"; types
imported in this way never shadow other types.
Explicit imports give access to just the named type; they can shadow other types that would normally be
visible through an implicit import, or through the normal package visibility rules.

It is often considered bad practice to use implicit imports. The only advantage to doing so is making the code
more concise, and there are a number of disadvantages:

The exact dependencies of a file are not visible at a glance.
Confusing compile-time errors can be introduced if a type name is used that could originate from several
implicit imports.

Recommendation

For readability, it is recommended to use explicit imports instead of implicit imports. Many modern IDEs provide
automatic functionality to help achieve this, typically under the name "Organize imports". They can also fold away
the import declarations, and automatically manage imports: adding them when a particular type is auto-completed
by the editor, and removing them when they are not necessary. This functionality makes implicit imports mainly
redundant.

Example

The following example uses implicit imports. This means that it is not clear to a programmer where the typeList

on line 5 is imported from.

1 import java.util.*; // AVOID: Implicit import statements
2 import java.awt.*;
3
4 public class Customers {

 5 public List getCustomers() { // Compiler error: 'List' is ambiguous.
 6 ...
 7 }

8 }

To improve readability, the implicit imports should be replaced by explicit imports. For example, import
 should be replaced by on line 1.java.util.*; import java.util.List;

References

Java Language Specification: , .6.4.1 Shadowing 7.5.2 Type-Import-on-Demand Declarations

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-7.html#jls-7.5.2

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 299

Declare immutable fields 'final'

Category: > Advisory Declarations (1)

Description: A field of immutable type that is assigned to only in a constructor or static initializer of its
declaring type, but is not declared 'final', may lead to defects and makes code less readable.

A field of immutable type that is not declared , but is assigned to only in a constructor or static initializer offinal

its declaring type, may lead to defects and makes code less readable. This is because other parts of the code
may be based on the assumption that the field has a constant value, and a later modification, which includes an
assignment to the field, may invalidate this assumption.

Recommendation

If a field of immutable type is assigned to only during class or instance initialization, you should usually declare it
. This forces the compiler to verify that the field value cannot be changed subsequently, which can help tofinal

avoid defects and increase code readability.

References

Java Language Specification: , .4.12.4 final Variables 8.3.1.2 final Fields

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.4
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1.2

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 300

Do not make mutable fields public

Category: > Advisory Declarations (1)

Description: A non-constant field that is not declared 'private', but is not accessed outside of its declaring
type, may decrease code maintainability.

A non-final or non-static field that is not declared , but is not accessed outside of its declaring type, mayprivate

decrease code maintainability. This is because a field that is accessible from outside the class that it is declared
in tends to restrict the class to a particular implementation.

Recommendation

In the spirit of encapsulation, it is generally advisable to choose the most restrictive access modifier () forprivate

a field, unless there is a good reason to increase its visibility.

References

J. Bloch, , Item 13. Addison-Wesley, 2008.Effective Java (second edition)
The Java Tutorials: .Controlling Access to Members of a Class

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 301

Use '@Override' annotation when overriding a method

Category: > Advisory Declarations (1)

Description: A method that overrides a method in a superclass but does not have an 'Override' annotation
cannot take advantage of compiler checks, and makes code less readable.

Java enables you to annotate methods that are intended to override a method in a superclass. Compilers are
required to generate an error if such an annotated method does not override a method in a superclass, which
provides increased protection from potential defects. An annotated method also improves code readability.

Recommendation

Add an annotation to a method that is intended to override a method in a superclass.@Override

Example

In the following example, overrides , so it is annotated with .Triangle.getArea Rectangle.getArea @Override

1 class Rectangle
2 {

 3 private int w = 10, h = 10;
 4 public int getArea() {
 5 return w * h;
 6 }

7 }
 8

9 class Triangle extends Rectangle
10 {

 11 @Override // Annotation of an overriding method
 12 public int getArea() {
 13 return super.getArea() / 2;
 14 }

15 }

References

J. Bloch, , Item 36. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Platform, Standard Edition 6, API Specification: .Annotation Type Override
The Java Tutorials: .Predefined Annotation Types

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Override.html
http://docs.oracle.com/javase/tutorial/java/annotations/predefined.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 302

Deprecated Code

Avoid using a deprecated method or constructor

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 303

Avoid using a deprecated method or constructor

Category: > Advisory Deprecated Code

Description: Using a method or constructor that has been marked as deprecated may be dangerous or
fail to take advantage of a better method or constructor.

A method (or constructor) can be marked as deprecated using either the annotation or the @Deprecated

 Javadoc tag. Using a method that has been marked as deprecated is bad practice, typically for one@deprecated

or more of the following reasons:

The method is dangerous.
There is a better alternative method.
Methods that are marked as deprecated are often removed from future versions of an API. So using a
deprecated method may cause extra maintenance effort when the API is upgraded.

Recommendation

Avoid using a method that has been marked as deprecated. Follow any guidance that is provided with the
 Javadoc tag, which should explain how to replace the call to the deprecated method.@deprecated

References

Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
Java Platform, Standard Edition 6, API Specification: .Annotation Type Deprecated
Java SE Documentation: .How and When To Deprecate APIs

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Deprecated.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javadoc/deprecation/deprecation.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 304

Documentation

Include a Javadoc comment for each public class or interface
Include a Javadoc comment for each public method or constructor
Include a Javadoc tag for each exception thrown by a public method or constructor
Include a Javadoc tag for each parameter of a public method or constructor
Include a Javadoc tag for the return value of a public method or constructor

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 305

Include a Javadoc comment for each public class or interface

Category: > Advisory Documentation

Description: A public class or interface that does not have a Javadoc comment affects maintainability.

A public class or interface that does not have a Javadoc comment makes an API more difficult to understand and
maintain.

Recommendation

Public classes and interfaces should be documented to make an API usable. For the purpose of code
maintainability, it is also advisable to document non-public classes and interfaces.

Documentation for users of an API should be written using the standard Javadoc format. This can be accessed
conveniently by users of an API from within standard IDEs, and can be transformed automatically into HTML
format.

Example

The following example shows a good Javadoc comment, which clearly explains what the class does, its author,
and version.

1 /**
 * The Stack class represents a last-in-first-out stack of objects. 2
 *3
 * @author Joseph Bergin4
 * @version 1.0, May 20005
 * Note that this version is not thread safe. 6
 */7

8 public class Stack {
9 // ...

References

J. Bloch, , Item 44. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Javadoc Preferences
Java SE Documentation: , How to Write Doc Comments for the Javadoc Tool Requirements for Writing

.Java API Specifications

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 306

Include a Javadoc comment for each public method or constructor

Category: > Advisory Documentation

Description: A public method or constructor that does not have a Javadoc comment affects
maintainability.

A public method or constructor that does not have a Javadoc comment makes an API more difficult to understand
and maintain.

Recommendation

Public methods and constructors should be documented to make an API usable. For the purpose of code
maintainability, it is also advisable to document non-public methods and constructors.

The Javadoc comment should describe the method or constructor does rather than , to allow for anywhat how
potential implementation change that is invisible to users of an API. It should include the following:

A description of any preconditions or postconditions
Javadoc tag elements that describe any parameters, return value, and thrown exceptions
Any other important aspects such as side-effects and thread safety

Documentation for users of an API should be written using the standard Javadoc format. This can be accessed
conveniently by users of an API from within standard IDEs, and can be transformed automatically into HTML
format.

Example

The following example shows a good Javadoc comment, which clearly explains what the method does, its
parameter, return value, and thrown exception.

1 /**
 * Extracts the user's name from the input arguments.2
 *3
 * Precondition: 'args' should contain at least one element, the user's name.4
 *5
 * @param args the command-line arguments.6
 * @return the user's name (the first command-line argument).7
 * @throws NoNameException if 'args' contains no element.8
 */9

10 public static String getName(String[] args) throws NoNameException {
 11 if(args.length == 0) {
 12 throw new NoNameException();
 13 } else {
 14 return args[0];
 15 }

16 }

References

J. Bloch, , Item 44. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Javadoc Preferences
Java SE Documentation: , How to Write Doc Comments for the Javadoc Tool Requirements for Writing

.Java API Specifications

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 307

Include a Javadoc tag for each exception thrown by a public method or constructor

Category: > Advisory Documentation

Description: A public method or constructor that throws an exception but does not have a Javadoc tag for
the exception affects maintainability.

A public method or constructor that throws an exception but does not have a Javadoc tag for the exception
makes an API more difficult to understand and maintain. This includes checked exceptions in clauses andthrows

unchecked exceptions that are explicitly thrown in statements.throw

Recommendation

The Javadoc comment for a method or constructor should include a Javadoc tag element that describes each
thrown exception.

Example

The following example shows a good Javadoc comment, which clearly explains the method's thrown exception.

1 /**
 * Extracts the user's name from the input arguments.2
 *3
 * Precondition: 'args' should contain at least one element, the user's name.4
 *5
 * @param args the command-line arguments.6
 * @return the user's name (the first command-line argument).7
 * @throws NoNameException if 'args' contains no element.8
 */9

10 public static String getName(String[] args) throws NoNameException {
 11 if(args.length == 0) {
 12 throw new NoNameException();
 13 } else {
 14 return args[0];
 15 }

16 }

References

J. Bloch, , Items 44 and 62. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Javadoc Preferences
Java SE Documentation: , How to Write Doc Comments for the Javadoc Tool Requirements for Writing

.Java API Specifications

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 308

Include a Javadoc tag for each parameter of a public method or constructor

Category: > Advisory Documentation

Description: A public method or constructor that does not have a Javadoc tag for each parameter affects
maintainability.

A public method or constructor that does not have a Javadoc tag for each parameter makes an API more difficult
to understand and maintain.

Recommendation

The Javadoc comment for a method or constructor should include a Javadoc tag element that describes each
parameter.

Example

The following example shows a good Javadoc comment, which clearly explains the method's parameter.

1 /**
 * Extracts the user's name from the input arguments.2
 *3
 * Precondition: 'args' should contain at least one element, the user's name.4
 *5
 * @param args the command-line arguments.6
 * @return the user's name (the first command-line argument).7
 * @throws NoNameException if 'args' contains no element.8
 */9

10 public static String getName(String[] args) throws NoNameException {
 11 if(args.length == 0) {
 12 throw new NoNameException();
 13 } else {
 14 return args[0];
 15 }

16 }

References

J. Bloch, , Item 44. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Javadoc Preferences
Java SE Documentation: , How to Write Doc Comments for the Javadoc Tool Requirements for Writing

.Java API Specifications

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 309

Include a Javadoc tag for the return value of a public method or constructor

Category: > Advisory Documentation

Description: A public method that does not have a Javadoc tag for its return value affects maintainability.

A public method that does not have a Javadoc tag for its return value makes an API more difficult to understand
and maintain.

Recommendation

The Javadoc comment for a method should include a Javadoc tag element that describes the return value.

Example

The following example shows a good Javadoc comment, which clearly explains the method's return value.

1 /**
 * Extracts the user's name from the input arguments.2
 *3
 * Precondition: 'args' should contain at least one element, the user's name.4
 *5
 * @param args the command-line arguments.6
 * @return the user's name (the first command-line argument).7
 * @throws NoNameException if 'args' contains no element.8
 */9

10 public static String getName(String[] args) throws NoNameException {
 11 if(args.length == 0) {
 12 throw new NoNameException();
 13 } else {
 14 return args[0];
 15 }

16 }

References

J. Bloch, , Item 44. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Javadoc Preferences
Java SE Documentation: , How to Write Doc Comments for the Javadoc Tool Requirements for Writing

.Java API Specifications

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 310

Java Objects (1)

Avoid overriding 'Object.clone'
Avoid overriding 'Object.finalize'
Avoid using a method that overrides 'Object.clone'
Avoid using the 'Cloneable' interface

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 311

Avoid overriding 'Object.clone'

Category: > Advisory Java Objects (1)

Description: Overriding 'Object.clone' is bad practice. Copying an object using the 'Cloneable interface'
and 'Object.clone' is error-prone.

Copying an object using the interface and the method is error-prone. This is because the Cloneable Object.clone

 interface and the method are unusual:Cloneable clone

The interface has no methods. Its only use is to trigger different behavior of .Cloneable Object.clone

Object.clone is protected.
Object.clone creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of : first,clone

make the class implement to change the behavior of so that it makes a copy instead ofCloneable Object.clone

throwing a ; second, override to make it public, to allow it to be called. AnotherCloneNotSupportedException clone

consequence of not having any methods is that it does not say anything about an object thatCloneable

implements it, which means that you cannot perform a polymorphic clone operation.

The third point, creating a shallow copy, is the most serious one. A shallow copy shares internalObject.clone

state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the interface andCloneable

the method, without the subtlety involved in implementing and using correctly.Object.clone clone

Example

In the following example, class includes a copy constructor. Its parameter is of type .Galaxy Galaxy

1 public final class Galaxy {
2

 3 // This is the original constructor.
 4 public Galaxy (double aMass, String aName) {
 5 fMass = aMass;
 6 fName = aName;
 7 }

8
 9 // This is the copy constructor.
 10 public Galaxy(Galaxy aGalaxy) {
 11 this(aGalaxy.getMass(), aGalaxy.getName());
 12 }

13
 14 // ...

15 }

References

J. Bloch, , Item 11. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Specification: , .Interface Cloneable Object.clone

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 312

Avoid overriding 'Object.finalize'

Category: > Advisory Java Objects (1)

Description: Overriding 'Object.finalize' is not a reliable way to terminate use of resources.

Overriding the method is not a reliable way to terminate use of resources. In particular, there areObject.finalize

no guarantees regarding the timeliness of finalizer execution.

Recommendation

Provide explicit termination methods, which should be called by users of an API.

References

J. Bloch, , Item 7. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .12.6. Finalization of Class Instances

http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.6

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 313

Avoid using a method that overrides 'Object.clone'

Category: > Advisory Java Objects (1)

Description: Calling a method that overrides 'Object.clone' is bad practice. Copying an object using the
'Cloneable interface' and 'Object.clone' is error-prone.

Copying an object using the interface and the method is error-prone. This is because the Cloneable Object.clone

 interface and the method are unusual:Cloneable clone

The interface has no methods. Its only use is to trigger different behavior of .Cloneable Object.clone

Object.clone is protected.
Object.clone creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of : first,clone

make the class implement to change the behavior of so that it makes a copy instead ofCloneable Object.clone

throwing a ; second, override to make it public, to allow it to be called. AnotherCloneNotSupportedException clone

consequence of not having any methods is that it does not say anything about an object thatCloneable

implements it, which means that you cannot perform a polymorphic clone operation.

The third point, creating a shallow copy, is the most serious one. A shallow copy shares internalObject.clone

state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the interface andCloneable

the method, without the subtlety involved in implementing and using correctly.Object.clone clone

Example

In the following example, class includes a copy constructor. Its parameter is of type .Galaxy Galaxy

1 public final class Galaxy {
2

 3 // This is the original constructor.
 4 public Galaxy (double aMass, String aName) {
 5 fMass = aMass;
 6 fName = aName;
 7 }

8
 9 // This is the copy constructor.
 10 public Galaxy(Galaxy aGalaxy) {
 11 this(aGalaxy.getMass(), aGalaxy.getName());
 12 }

13
 14 // ...

15 }

References

J. Bloch, , Item 11. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Specification: , .Interface Cloneable Object.clone

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 314

Avoid using the 'Cloneable' interface

Category: > Advisory Java Objects (1)

Description: Using the 'Cloneable' interface is bad practice. Copying an object using the 'Cloneable
interface' and 'Object.clone' is error-prone.

Copying an object using the interface and the method is error-prone. This is because the Cloneable Object.clone

 interface and the method are unusual:Cloneable clone

The interface has no methods. Its only use is to trigger different behavior of .Cloneable Object.clone

Object.clone is protected.
Object.clone creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of : first,clone

make the class implement to change the behavior of so that it makes a copy instead ofCloneable Object.clone

throwing a ; second, override to make it public, to allow it to be called. AnotherCloneNotSupportedException clone

consequence of not having any methods is that it does not say anything about an object thatCloneable

implements it, which means that you cannot perform a polymorphic clone operation.

The third point, creating a shallow copy, is the most serious one. A shallow copy shares internalObject.clone

state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the interface andCloneable

the method, without the subtlety involved in implementing and using correctly.Object.clone clone

Example

In the following example, class includes a copy constructor. Its parameter is of type .Galaxy Galaxy

1 public final class Galaxy {
2

 3 // This is the original constructor.
 4 public Galaxy (double aMass, String aName) {
 5 fMass = aMass;
 6 fName = aName;
 7 }

8
 9 // This is the copy constructor.
 10 public Galaxy(Galaxy aGalaxy) {
 11 this(aGalaxy.getMass(), aGalaxy.getName());
 12 }

13
 14 // ...

15 }

References

J. Bloch, , Item 11. Addison-Wesley, 2008.Effective Java (second edition)
Java Platform, Standard Edition 6, API Specification: , .Interface Cloneable Object.clone

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 315

Naming (1)

Begin a class or interface name with an uppercase letter
Begin a method name with a lowercase letter
Begin a variable name with a lowercase letter
Use lowercase letters throughout a package name
Use uppercase letters throughout a constant name

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 316

Begin a class or interface name with an uppercase letter

Category: > Advisory Naming (1)

Description: A class or interface name that begins with a lowercase letter decreases readability.

A class or interface name that begins with a lowercase letter does not follow standard naming conventions, which
decreases code readability. For example, .hotelbooking

Recommendation

Begin the class name with an uppercase letter and use camel case: capitalize the first letter of each word within
the class name. For example, .HotelBooking

References

J. Bloch, , Item 56. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .6.1. Declarations
Java SE Documentation: .9 - Naming Conventions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 317

Begin a method name with a lowercase letter

Category: > Advisory Naming (1)

Description: A method name that begins with an uppercase letter decreases readability.

A method name that begins with an uppercase letter does not follow standard naming conventions, which
decreases code readability. For example, .Getbackground

Recommendation

Begin the method name with a lowercase letter and use camel case: capitalize the first letter of each word within
the method name. For example, .getBackground

References

J. Bloch, , Item 56. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .6.1. Declarations
Java SE Documentation: .9 - Naming Conventions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 318

Begin a variable name with a lowercase letter

Category: > Advisory Naming (1)

Description: A variable name that begins with an uppercase letter decreases readability.

A variable name that begins with an uppercase letter does not follow standard naming conventions, which
decreases code readability. For example, . This applies to local variables, parameters, andNumberofguests

non-constant fields.

Recommendation

Begin the variable name with a lowercase letter and use camel case: capitalize the first letter of each word within
the variable name. For example, .numberOfGuests

References

J. Bloch, , Item 56. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .6.1. Declarations
Java SE Documentation: .9 - Naming Conventions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 319

Use lowercase letters throughout a package name

Category: > Advisory Naming (1)

Description: A package name that contains uppercase letters decreases readability.

A package name that contains uppercase letters does not follow standard naming conventions, which decreases
code readability. For example, .Com.Sun.Eng

Recommendation

Use lowercase letters throughout a package name. For example, .com.sun.eng

References

J. Bloch, , Item 56. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .6.1. Declarations
Java SE Documentation: .9 - Naming Conventions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 320

Use uppercase letters throughout a constant name

Category: > Advisory Naming (1)

Description: A static, final field name that contains lowercase letters decreases readability.

A static, final field name that contains lowercase letters does not follow standard naming conventions, which
decreases code readability. For example, .Min_Width

Recommendation

Use uppercase letters throughout a static, final field name, and use underscores to separate words within the
field name. For example, .MIN_WIDTH

References

J. Bloch, , Item 56. Addison-Wesley, 2008.Effective Java (second edition)
Java Language Specification: .6.1. Declarations
Java SE Documentation: .9 - Naming Conventions

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 321

Statements

Avoid writing more than one statement per line
Include a 'default' case in a 'switch' statement
Include a terminating 'else' clause in an 'if-else-if' statement

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 322

Avoid writing more than one statement per line

Category: > Advisory Statements

Description: More than one statement per line decreases readability.

Code where each statement is defined on a separate line is much easier for programmers to read than code
where multiple statements are defined on the same line.

Recommendation

Separate statements by a newline character.

References

Java SE Documentation: .7.1 Simple Statements

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#431

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 323

Include a 'default' case in a 'switch' statement

Category: > Advisory Statements

Description: A 'switch' statement that is based on a non-enumerated type and that does not have a
'default' case may allow execution to 'fall through' silently.

A statement without a case may allow execution to 'fall through' silently, if no cases are matched.switch default

Recommendation

In a statement that is based on a variable of a non-enumerated type, include a case to preventswitch default

execution from falling through silently when no cases are matched. If the case is intended to bedefault

unreachable code, it is advisable that it throws a to alert the user of an internal error.RuntimeException

Example

In the following example, the statement outputs the menu choice that the user has made. However, if theswitch

user does not choose 1, 2, or 3, execution falls through silently.

1 int menuChoice;
2
3 // ...
4
5 switch (menuChoice) {

 6 case 1:
 7 System.out.println("You chose number 1.");
 8 break;
 9 case 2:
 10 System.out.println("You chose number 2.");
 11 break;
 12 case 3:
 13 System.out.println("You chose number 3.");
 14 break;
 15 // BAD: No 'default' case

16 }

In the following modified example, the statement includes a case, to allow for the user making answitch default

invalid menu choice.

1 int menuChoice;
2
3 // ...
4
5 switch (menuChoice) {

 6 case 1:
 7 System.out.println("You chose number 1.");
 8 break;
 9 case 2:
 10 System.out.println("You chose number 2.");
 11 break;
 12 case 3:
 13 System.out.println("You chose number 3.");
 14 break;
 15 default: // GOOD: 'default' case for invalid choices
 16 System.out.println("Sorry, you made an invalid choice.");
 17 break;

18 }

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 324

References

Java SE Documentation: .7.8 switch Statements

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#468

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 325

Include a terminating 'else' clause in an 'if-else-if' statement

Category: > Advisory Statements

Description: An 'if-else-if' statement without a terminating 'else' clause may allow execution to 'fall
through' silently.

An statement without a terminating clause may allow execution to 'fall through' silently, if none ofif-else-if else

the clauses are matched.if

Recommendation

Include a terminating clause to statements to prevent execution from falling through silently. If theelse if-else-if

terminating clause is intended to be unreachable code, it is advisable that it throws a toelse RuntimeException

alert the user of an internal error.

Example

In the following example, the statement outputs the grade that is achieved depending on the test score.if

However, if the score is less than 60, execution falls through silently.

1 int score;
2 char grade;
3
4 // ...
5
6 if (score >= 90) {

 7 grade = 'A';
8 } else if (score >= 80) {

 9 grade = 'B';
10 } else if (score >= 70) {

 11 grade = 'C';
12 } else if (score >= 60) {

 13 grade = 'D';
 14 // BAD: No terminating 'else' clause

15 }
16 System.out.println("Grade = " + grade);

In the following modified example, the statement includes a terminating clause, to allow for scores thatif else

are less than 60.

1 int score;
2 char grade;
3
4 // ...
5
6 if (score >= 90) {

 7 grade = 'A';
8 } else if (score >= 80) {

 9 grade = 'B';
10 } else if (score >= 70) {

 11 grade = 'C';
12 } else if (score >= 60) {

 13 grade = 'D';
14 } else { // GOOD: Terminating 'else' clause for all other scores

 15 grade = 'F';
16 }
17 System.out.println("Grade = " + grade);

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 326

References

Java SE Documentation: .7.4 if, if-else, if else-if else Statements

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#449

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 327

Types (1)

Provide type parameters in call to a constructor of a generic type
Provide type parameters to generic types
Use a parameterized instance of a generic type for a method return type

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 328

Provide type parameters in call to a constructor of a generic type

Category: > Advisory Types (1)

Description: Parameterizing a call to a constructor of a generic type increases type safety and code
readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation

Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawList(Object o) {
 2 List list; // Raw variable declaration
 3 list = new ArrayList(); // Raw constructor call
 4 list.add(o);
 5 return list; // Raw method return type (see signature above)

6 }

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParameterizedList(T o) {
 2 List<T> list; // Parameterized variable declaration
 3 list = new ArrayList<T>(); // Parameterized constructor call
 4 list.add(o);
 5 return list; // Parameterized method return type (see signature above)

6 }

References

J. Bloch, , Item 23. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
The Java Tutorials: , .Generics Converting Legacy Code to Use Generics

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 329

Provide type parameters to generic types

Category: > Advisory Types (1)

Description: Declaring a field, parameter, or local variable as a parameterized type increases type safety
and code readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation

Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawList(Object o) {
 2 List list; // Raw variable declaration
 3 list = new ArrayList(); // Raw constructor call
 4 list.add(o);
 5 return list; // Raw method return type (see signature above)

6 }

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParameterizedList(T o) {
 2 List<T> list; // Parameterized variable declaration
 3 list = new ArrayList<T>(); // Parameterized constructor call
 4 list.add(o);
 5 return list; // Parameterized method return type (see signature above)

6 }

References

J. Bloch, , Item 23. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
The Java Tutorials: , .Generics Converting Legacy Code to Use Generics

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

Advisory rules

JPL Java Coding Standard v1.0 March 31, 2014. Page 330

Use a parameterized instance of a generic type for a method return type

Category: > Advisory Types (1)

Description: Using a parameterized instance of a generic type for a method return type increases type
safety and code readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation

Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawList(Object o) {
 2 List list; // Raw variable declaration
 3 list = new ArrayList(); // Raw constructor call
 4 list.add(o);
 5 return list; // Raw method return type (see signature above)

6 }

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParameterizedList(T o) {
 2 List<T> list; // Parameterized variable declaration
 3 list = new ArrayList<T>(); // Parameterized constructor call
 4 list.add(o);
 5 return list; // Parameterized method return type (see signature above)

6 }

References

J. Bloch, , Item 23. Addison-Wesley, 2008.Effective Java (second edition)
Help - Eclipse Platform: .Java Compiler Errors/Warnings Preferences
The Java Tutorials: , .Generics Converting Legacy Code to Use Generics

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

	JPL Java Coding Standard
	Critical
	Arithmetic
	Avoid casting the result of integer multiplication to type 'long'
	Avoid implicit narrowing in compound assignment
	Avoid type mismatch in conditional expressions
	Avoid using octal literals
	Do not test floating point equality

	Concurrency
	API Misuse
	Avoid ineffective thread definitions
	Avoid setting thread priorities
	Avoid using 'notify'
	Do not call 'Thread.yield'
	Do not spin on field
	Do not start a thread in a constructor

	Synchronization
	Avoid data races by accessing shared variables under synchronization
	Avoid empty synchronized blocks
	Avoid inconsistent synchronization for 'writeObject'
	Avoid inconsistent synchronization of overriding methods
	Avoid synchronizing 'set' but not 'get'
	Do not synchronize on a field and update it

	Thread Safety
	Avoid lazy initialization of a static field
	Avoid static fields of type 'DateFormat' (or its descendants)
	Ensure that a method releases locks on exit

	Waiting
	Avoid calling 'Object.wait' while two locks are held
	Avoid calling 'Thread.sleep' with a lock held
	Avoid calling 'wait' on a 'Condition' interface
	Avoid controlling thread interaction by using ineffective or wasteful methods
	Do not call 'wait' outside a loop

	Declarations
	Avoid ambiguity when calling a method that is in both a superclass and an outer class
	Avoid confusing non-override of package-private method
	Avoid hiding a field in a super class
	Include 'break' in a 'case' statement

	Encapsulation
	Avoid casting from an abstract collection to a concrete implementation type
	Avoid declaring array constants
	Avoid defining an interface (or abstract class) only to hold constants

	Equality
	Avoid comparing arrays using 'Object.equals'
	Avoid comparing object identity of boxed types
	Avoid comparing object identity of strings
	Avoid hashed instances that do not define 'hashCode'
	Avoid overriding 'compareTo' but not 'equals'
	Avoid overriding only one of 'equals' and 'hashCode'
	Avoid possible inconsistency due to 'instanceof' in 'equals'
	Avoid reference comparisons with operands of type 'Object'
	Avoid unintentionally overloading 'Object.equals'
	Do not make calls of the form 'x.equals(y)' with incomparable types
	Ensure that an implementaton of 'equals' inspects its argument type

	Exceptions
	Avoid catching 'Throwable' or 'Exception'
	Do not dereference a variable that is 'null'
	Ensure that 'finally' blocks complete normally

	Expressions
	Avoid accidentally assigning to a local variable in a 'return' statement
	Avoid accidentally using a bitwise logical operator instead of a conditional operator

	Extensibility
	Avoid calling 'getClass().getResource()'
	Avoid forcible termination of the JVM

	Incomplete Code
	Avoid empty blocks or statements
	Avoid empty statements
	Ensure that a 'switch' includes cases for all 'enum' constants

	Java objects
	Cloning
	Ensure that a subclass 'clone' method calls 'super.clone'

	Garbage collection
	Do not call 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit'

	Serialization
	Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type
	Ensure that a class that implements 'Comparator' and is used to construct a sorted collection is serializable
	Ensure that a non-serializable, immediate superclass of a serializable class declares a default constructor
	Ensure that a non-static, serializable nested class is enclosed in a serializable class

	Logic Errors
	Annotate annotations with a 'RUNTIME' retention policy
	Avoid array downcasts
	Avoid type mismatch when calling 'Collection.contains'
	Avoid type mismatch when calling 'Collection.remove'
	Do not call a non-final method from a constructor
	Do not perform self-assignment
	Include braces for control structures

	Naming
	Avoid declaring a method with the same name as its declaring type
	Avoid naming a method with the same name as a superclass method but with different capitalization

	Random
	Avoid using 'Math.abs' to generate a non-negative random integer

	Resource Leaks
	Ensure that an input resource is closed on completion
	Ensure that an output resource is closed on completion

	Strings
	Avoid appending an array to a string without converting it to a string
	Avoid calling the default implementation of 'toString'
	Avoid printing an array without converting it to a string

	Types
	Avoid boxed types

	Important
	Arithmetic (1)
	Avoid checking the sign of the result of a bitwise operation
	Avoid confusion when multiplying a remainder by an integer
	Do not check parity by comparing to a positive number

	Complexity
	Avoid creating classes that have a high response
	Avoid creating methods that call many other methods
	Avoid creating methods that have a high cyclomatic complexity

	Concurrency (1)
	API Misuse (1)
	Do not directly call 'run'

	Coupling
	Avoid creating classes that depend on many other types
	Avoid feature envy from a method to a class
	Avoid hub classes
	Avoid inappropriate intimacy between classes

	Declarations (2)
	Avoid assignment to parameters in a method or constructor
	Avoid using the same name for a field and a variable

	Duplicate Code
	Avoid duplicate anonymous classes
	Avoid duplicate methods
	Avoid mostly duplicate classes
	Avoid mostly duplicate files
	Avoid mostly duplicate methods
	Avoid mostly similar files

	Encapsulation (1)
	Avoid creating classes that lack cohesion
	Avoid creating subclasses that have a high specialization index
	Avoid exposing an object's internal representation

	Equality (1)
	Avoid unintentionally overloading 'Comparable.compareTo'
	Redefine 'equals' in subclasses that have additional fields

	Exceptions (1)
	Avoid dereferencing a variable that may be 'null'
	Avoid unreachable 'catch' clauses
	Do not drop an exception

	Expressions (1)
	Avoid assignments in Boolean expressions
	Avoid very complex conditions

	Extensibility (1)
	Avoid writing to a static field from an instance method

	Incomplete Code (1)
	Do not include empty 'finalize' methods
	Ensure that 'TODO' or 'FIXME' comments are resolved
	Ensure that 'ZipOutputStream.write' is called when writing a ZIP file

	Inefficient Code
	Avoid calling 'Collection.toArray' with a zero-length array argument
	Avoid calling a boxed type's constructor directly
	Avoid checking a string for equality with an empty string
	Avoid iterating through a map using its key set
	Avoid non-static nested classes unless necessary
	Avoid performing string concatenation in a loop
	Avoid using the 'String(String)' constructor

	Java objects (2)
	Cloning (1)
	Ensure that a class that implements 'Cloneable' overrides 'clone'

	Garbage collection (1)
	Do not set fields to 'null' in a finalizer
	Do not trigger garbage collection explicitly
	Ensure that a 'finalize' method calls 'super.finalize'

	Serialization (1)
	Do not use 'transient' in a non-serializable class
	Ensure that 'readResolve' has the correct signature
	Ensure that a class that implements 'Externalizable' has a public no-argument constructor
	Ensure that each non-transient, non-static field in a serializable class is serializable
	Ensure that the signatures of 'readObject' and 'writeObject' on a serializable class are correct

	JUnit
	Ensure that a JUnit test case class contains correctly declared test methods
	Ensure that a JUnit test method that overrides 'tearDown' calls 'super.tearDown'
	Use the correct signature for a 'suite' method in JUnit

	Logic Errors (1)
	Avoid extending or implementing an annotation
	Avoid nested loops that use the same variable
	Do not compare identical expressions

	Magic Constants
	Avoid magic numbers and add a named constant
	Avoid magic numbers and use an existing named constant
	Avoid magic strings and add a named constant
	Avoid magic strings and use an existing named constant

	Naming (2)
	Avoid declaring a method with the name 'equal'
	Avoid declaring a method with the name 'hashcode'
	Avoid declaring a method with the name 'tostring'
	Avoid methods in the same class whose names differ only in capitalization
	Avoid naming a class with the same name as its superclass
	Avoid overloaded methods that have similar parameter types
	Avoid using 'enum' as an identifier

	Random (1)
	Do not create an instance of 'Random' for each pseudo-random number required

	Result Checking
	Avoid calling 'next' from an iterator implementation of 'hasNext'
	Do not ignore a method's return value
	Ensure that the results of all method calls are used
	Handle the results of calls to a particular method consistently

	Size
	Avoid creating classes that contain many fields
	Avoid creating files that contain many lines of code
	Avoid creating methods that contain many levels of nesting
	Avoid creating methods that contain many lines of code
	Avoid creating methods that have many parameters
	Avoid too many complex statements in a block
	Review files that have been changed by many authors

	Spring
	Add 'description' elements to Spring bean definitions
	A non-abstract parent Spring bean must not specify an abstract class
	Avoid defining too many Spring beans in the same file
	Avoid overriding a property with the same contents in a child Spring bean
	Avoid using autowiring in Spring beans
	Create a common parent bean for Spring beans that share properties
	Ensure that each property in a Spring bean definition has a matching setter
	Put 'import' statements before Spring bean definitions
	Use 'id' instead of 'name' to name a Spring bean
	Use a type name instead of an index number in a Spring 'constructor-arg' element
	Use local references when referring to Spring beans in the same file
	Use setter injection instead of constructor injection when using Spring
	Use shortcut forms in Spring bean definitions

	Strings (1)
	Avoid calling 'toString' on a string
	Avoid calling 'toUpperCase()' or 'toLowerCase()' without specifying the locale

	Swing
	Avoid calling Swing methods from a thread other than the event-dispatching thread
	Ensure that event handler overrides have exactly the right name

	Types (2)
	Avoid naming a type variable the same as another type that is in scope
	Avoid trying to extend a final type using a wildcard
	Do not call a varargs method with an ambiguous argument

	Useless Code
	Avoid futile assignments to a local variable
	Avoid local variables that are never read
	Avoid redundant types
	Avoid unnecessary 'import' statements
	Avoid unnecessary casts
	Avoid unused fields
	Avoid unused labels
	Ensure that fields are explicitly initialized
	Ensure that interface methods are compatible with 'java.lang.Object'

	Advisory
	Declarations (1)
	Avoid implicit imports
	Declare immutable fields 'final'
	Do not make mutable fields public
	Use '@Override' annotation when overriding a method

	Deprecated Code
	Avoid using a deprecated method or constructor

	Documentation
	Include a Javadoc comment for each public class or interface
	Include a Javadoc comment for each public method or constructor
	Include a Javadoc tag for each exception thrown by a public method or constructor
	Include a Javadoc tag for each parameter of a public method or constructor
	Include a Javadoc tag for the return value of a public method or constructor

	Java Objects (1)
	Avoid overriding 'Object.clone'
	Avoid overriding 'Object.finalize'
	Avoid using a method that overrides 'Object.clone'
	Avoid using the 'Cloneable' interface

	Naming (1)
	Begin a class or interface name with an uppercase letter
	Begin a method name with a lowercase letter
	Begin a variable name with a lowercase letter
	Use lowercase letters throughout a package name
	Use uppercase letters throughout a constant name

	Statements
	Avoid writing more than one statement per line
	Include a 'default' case in a 'switch' statement
	Include a terminating 'else' clause in an 'if-else-if' statement

	Types (1)
	Provide type parameters in call to a constructor of a generic type
	Provide type parameters to generic types
	Use a parameterized instance of a generic type for a method return type

