=L

Jet Propulsion Laboratory

JPL Java Coding Standard

JPL Institutional Coding Standard for the Java Programming Language

Version 1.0

Published March 31, 2014

1 CHUCAl . .ot 6

L ANNMEEIC . .o 7
1.2 CONCUITENCY . . ittt e et e 13
1.3 DeClarationso e 45
LA ENCapSUIAtioN e 51
LS EqUality ..o e 57
1.6 EXCEPIONS .. e e e 72
L7 EXPIESSIONS . .t e 76
LB EXIENSIDIlity e 79
L9 Incomplete Code e 84
1,10 Java 0bjeCtS .. e 88
L. 1L LOgIC ErOrS .ot e 102
L.12 NAMING e e e e e 111
L. 8 RANUOM . e 114
114 RESOUICE LEAKS . ..ottt 116
L 0D SHINGS .ot e 119
L LB TP ot 124
2 MNP0 ANt 126
2.1 AtMELIC (1) .. 127
2.2 COMPIEXItY . oo 131
2.3 CONCUITENCY (L) .ottt et e e e e e 136
2.4 COUPIING oottt e e e 140
2.5 DECIAratioNS (2) .. e e e 147
2.6 Duplicate Code 150
2.7 Encapsulation (1) 159
2. 8 EQUANItY (1) .ot 165
2.9 EXCEPUONS (1) oo e 168
2. 10 EXPresSSiONS (L) . vvv ettt ettt e 173
2. 11 Extensibility (1) 177
2.12 Incomplete Code (1) . ..ottt 180
2.13 Inefficient Code 184
2,14 Java 0bjeCtS (2) .o e 192
2. 1S JUNI 212
2. 16 LOGIC EITOrs (1) ..o vttt e e 217
2.17 MagiC CONSIANTIS . . .ottt e 221
2. 18 NAMING (2) ..ot e 230
2,09 RaNAOM (1) .. .o 238
220 Result Checkingo 240
2,20 SiZE o 245
2,22 SPIING o et 255
2.23 StNGS (L) - o oot e 273
2.2 SWING . oo 276
2. 2D TYPES () o vttt 281
2,26 USeless GOl e 286
B AAVISOIY . 296
3L DeClarations (L) ..o v 297
3.2 Deprecated Codet e 302
3.3 DOCUMENTALION . . o ottt e e 304

3.4.Java ODbJECES (1)ttt et 310

3.5 Naming (1)
3.6 Statements
3.7 Types (1)

Overview

JPL Java Coding Standard

Acknowledgements

This standard is based on the JPL Java Coding Standard developed by Klaus Havelund and Al Niessner. It was
developed as a collaboration between Jet Propulsion Laboratory (JPL) and Semmle Limited. The following
additional people at JPL have contributed to the standard via their comments: Eddie Benowitz, Dj Byrne, Bradley
Clement, Thomas Crockett, Bob Deen, Marti DeMore, Dan Dvorak, Gerard Holzmann, Thomas Huang, Mark
Indictor, Rajeev Joshi, Ara Kassabian, Cin-Young Lee, Ken Peters and David Wagner.

Introduction

This document presents a JPL institutional coding standard for the Java programming language. The primary
purpose of the standard is to help Java programmers reduce the probability of run-time errors in their programs.
A secondary, but related, purpose is to improve on dimensions such as readability and maintainability of code.

The standard is meant for ground software programming. The restrictions on ground software are less severe
than the restrictions on flight software, mainly because of the richer resources available on ground software
computers, and the often less time critical nature of ground applications. However, note that JPL ground software
can indeed be mission critical (meaning that a loss of capability may lead to reduction in mission effectiveness).
Amongst the most important general differences from the JPL institutional C coding standard for flight software
references (JPL-C-STD) are: (1) the Java standard allows dynamic memory allocation (object creation) after
initialization, (2) the Java standard allows recursion, and (3) the Java standard does not require loop bounds to
be statically verifiable. Apart from these differences most other differences are due to the different nature of the
two languages.

The standard is a collaboration between the Laboratory for Reliable Software (LaRS) at the Jet Propulsion
Laboratory (JPL) and Semmle Limited. Semmle develops and sells a static analyzer that analyzes Java code and
checks for adherence to the rules in this standard.

Terminology

Throughout this document, we use the following terms to discuss software quality:
® Rule — The coding standard consists of a set of rules. Each rule describes a coding convention that should
be avoided or adhered to, to help avoid coding mistakes, avoid bad programming practice, or otherwise
improve the quality of the software project. Rules are grouped by category (see table).
® Violation — Code that breaks a rule.
® Defect — A problem with the program, from coding mistakes through to user-reported problems concerning
the behavior of the program.

Rules

The rules are grouped into three high-level categories:

® Critical - these rules must always be followed and violations of these rules must be corrected as soon as

possible.
®* |mportant - these rules should be followed and violations of these rules should be corrected where

JPL Java Coding Standard v1.0 March 31, 2014. Page 4

Introduction

practical.
® Advisory - these rules represent good practice. Violations of these rules are allowed but not
recommended.

JPL Java Coding Standard v1.0 March 31, 2014. Page 5

Critical rules

Critical

Rules in this category must always be followed and violations of these rules must be corrected as soon as
possible after you identify them.

Rule types:

Arithmetic
Concurrency
Declarations
Encapsulation
Equality
Exceptions
Expressions
Extensibility
Incomplete Code
Java objects
Logic Errors
Naming
Random
Resource Leaks
Strings

Types

JPL Java Coding Standard v1.0 March 31, 2014. Page 6

Critical rules

Arithmetic

Avoid casting the result of integer multiplication to type 'long'
Avoid implicit narrowing in compound assignment

Avoid type mismatch in conditional expressions

Avoid using octal literals

Do not test floating point equality

JPL Java Coding Standard v1.0 March 31, 2014. Page 7

Critical rules

Avoid casting the result of integer multiplication to type 'long’

...

Category: Critical > Arithmetic

Description: Casting the result of an integer multiplication to type 'long' instead of casting before the
multiplication may cause overflow.

An integer multiplication that is assigned to a variable of type | ong or returned from a method with return type
| ong may cause unexpected arithmetic overflow.

Recommendation

Casting to type | ong before multiplying reduces the risk of arithmetic overflow.

Example

In the following example, the multiplication expression assigned to j causes overflow and results in the value
- 1651507200 instead of 4000000000000000000.

1 int i = 2000000000;
2 long j =i*i; // causes overflow

In the following example, the assignment to k correctly avoids overflow by casting one of the operands to type
| ong.

1 int i = 2000000000;
2 long k = i*(long)i; // avoids overflow
References
® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 3. Addison-Wesley, 2005.
® The Java Language Specification: Multiplication Operator.
® Common Weakness Enumeration: CWE-190: Integer Overflow or Wraparound.
[]

The CERT Oracle Secure Coding Standard for Java: NUMOO-J. Detect or prevent integer overflow.

JPL Java Coding Standard v1.0 March 31, 2014. Page 8

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.1
http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

Critical rules

Avoid implicit narrowing in compound assignment

...

Category: Critical > Arithmetic

Description: Compound assignment statements (for example ‘intvar += longvar') that implicitly cast a
value of a wider type to a narrower type may result in information loss and numeric errors such as
overflows.

Compound assignment statements of the form x += y or x *= y perform an implicit narrowing conversion if the
type of x is narrower than the type of y. For example, x += y is equivalenttox = (T)(x + y), where T is the type
of x. This can result in information loss and numeric errors such as overflows.

Recommendation

Ensure that the type of the left-hand side of the compound assignment statement is at least as wide as the type
of the right-hand side.

Example

If x is of type short andy is of type i nt, the expression x + y is of type i nt . However, the expression x += y is
equivalentto x = (short) (x + y). The expression x + y is cast to the type of the left-hand side of the
assignment: short, possibly leading to information loss.

To avoid implicitly narrowing the type of x + y, change the type of x to i nt. Then the types of x and x + y are both
i nt and there is no need for an implicit cast.

References

J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 9. Addison-Wesley, 2005.
The Java Language Specification: Compound Assignment Operators, Narrowing Primitive Conversion.
Common Weakness Enumeration: CWE-190: Integer Overflow or Wraparound.

The CERT Oracle Secure Coding Standard for Java: NUMOO-J. Detect or prevent integer overflow.

JPL Java Coding Standard v1.0 March 31, 2014. Page 9

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.1.3
http://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Detect+or+prevent+integer+overflow

Critical rules

Avoid type mismatch in conditional expressions

...

Category: Critical > Arithmetic

Description: Using the '(p?el:e2)' operator with different primitive types for the second and third operands
may cause unexpected results. ’

Conditional expressions of the form (p ? e1 : e2) can yield unexpected results if e1 and e2 have distinct primitive
types.

Example

The following example illustrates the most confusing case, which occurs when one branch has type char and the
other branch does not have type char.

1 int i =0;
2 Systemout.print(true ? 'x' : 0); // prints "x"
3 Systemout.print(true ? 'x'" : i); // prints "120"

This unexpected result is due to binary numeric promotion of ' x* from char to i nt . For details on the result type of
the conditional operator, see the references.

Recommendation

When using the ternary conditional operator with numeric operands, the second and third operand should have
the same numeric type. This avoids potentially unexpected results caused by binary humeric promotion.

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 8. Addison-Wesley, 2005.
® The Java Language Specification: Conditional Operator ?.

JPL Java Coding Standard v1.0 March 31, 2014. Page 10

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.25

Critical rules

Avoid using octal literals

...

Category: Critical > Arithmetic

Description: An integer literal that starts with '0' may cause a problem. If the '0" is intentional, a
programmer may misread the literal as a decimal literal. If the '0' is unintentional and a decimal literal is
intended, the compiler treats the literal as an octal literal.

An integer literal consisting of a leading o digit followed by one or more digits in the range o- 7 is an octal literal.
This can lead to two problems:

® An octal literal can be misread by a programmer as a decimal literal.

* A programmer might accidentally start a decimal literal with a zero, so that the compiler treats the decimal
literal as an octal literal. For example, 010 is equal to 8, not 10.

Recommendation
To avoid these problems:

® Avoid using octal literals so that programmers do not confuse them with decimal literals. However, if you
need to use octal literals, you should add a comment to each octal literal indicating the intention to use
octal literals.

®* When typing decimal literals, be careful not to begin them with a zero accidentally.
References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 59. Addison-Wesley,
2005.

® The Java Language Specification: Integer Literals.

JPL Java Coding Standard v1.0 March 31, 2014. Page 11

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.1

Critical rules

Do not test floating point equality

...

Category: Critical > Arithmetic

Description: Equality tests on floating point values may lead to unexpected results.

...

Equality tests on floating point values may lead to unexpected results because of arithmetic imprecision. For
example, the expression 23. 42f ==23. 42 evaluates to f al se.

Recommendation

Instead of testing for exact equality between floating point values, check that the difference between the values is
within an appropriate error margin.

Alternatively, if you do not want any inaccuracy when testing for equality, use one of the following instead of
floating point values:

® Bigbeci mal class. This can store decimal values with higher precision.
® | ong type. Because this is an integer type, you must convert any decimal values to whole values. For
example, represent $1.43 as 143 cents.

Example

In the following example, (0.1 + 0.2) == 0.3 evaluates to f al se, even though you would expect it to evaluate to
true. This is because of the imprecision of floating point data types.

1 class NoConmpari sonOnFl oat s

2

3 public static void main(String[] args)

4 {

5 Systemout.printin((0.1 + 0.2) == 0.3);
6 }

7}

In the following improved example, the test for equality is performed by calculating the difference between the two
values, and checking if the difference is within the error margin, EPSI LON.

cl ass NoConpari sonOnFl oat s
{
public static void main(String[] args)

{
final double EPSILON = 0.001;

1
2
3
4
5
6 Systemout. println(Math.abs((0.1 + 0.2) - 0.3) < EPSILON);
7

8 1}

References

* J. Bloch, Effective Java (second edition), ltem 48. Addison-Wesley, 2008.
® Numerical Computation Guide: (What Every Computer Scientist Should Know About Floating-Point
Arithmetic).

JPL Java Coding Standard v1.0 March 31, 2014. Page 12

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Critical rules

Concurrency

® API Misuse

® Synchronization
® Thread Safety
® Waiting

JPL Java Coding Standard v1.0 March 31, 2014. Page 13

Critical rules

APl Misuse

Avoid ineffective thread definitions
Avoid setting thread priorities

Avoid using 'notify’

Do not call 'Thread.yield'

Do not spin on field

Do not start a thread in a constructor

JPL Java Coding Standard v1.0 March 31, 2014. Page 14

Critical rules

Avoid ineffective thread definitions

Category: Critical > Concurrency > API Misuse

Description: Thread instances that neither get an argument of type 'Runnable’ passed to their constructor
nor override the 'Thread.run' method are likely to have no effect.

New threads can be defined using one of the following alternatives:

® By extending the Thread class and overriding its r un method.
® By passing an argument of type Runnabl e to the constructor of the Thread class.

Thread instances that are defined using another approach are likely to have no effect.

Recommendation
To avoid empty thread instances, define new threads using one of the following alternatives:

® By extending the Thread class and overriding its r un method.

® By passing an argument of type Runnabl e to the constructor of the Thr ead class.
Example
In the following example, class Bad shows the definition of a thread that has no effect.

cl ass Bad{

1
2
3 public void runlnThread(){

4 Thread thread = new Thread();
5 thread.start();

6 1}

7

8

}

In the following example, class GoodW t hOver ri de shows how to extend the Thr ead class and override its run
method, and class Goodw t hRunnabl e shows how to pass an argument of type Runnabl e to the constructor of the
Thr ead class.

$body

1 class GoodWthOverride{

2

3 public void runlnThread(){

4 Thread thread = new Thread() {

5 @verride

6 public void run(){

7 System out . println("Doing something");
8

9 }s

10 thread. start;

11 }

12

13 }

14

15 cl ass GoodW t hRunnabl e{

16

17 public void runlnThread(){

18 Runnabl e thi ngToRun = new Runnabl e() {

19 @verride

20 public void run(){

21 System out . println("Doing sonething");
22 }

23 }s

24

25 Thread thread = new Thread(thingToRun());

JPL Java Coding Standard v1.0 March 31, 2014. Page 15

Critical rules

26 thread.start();
27 }

References

® Java API Documentation: Thread.
® The Java Tutorials: Defining and Starting a Thread.

JPL Java Coding Standard v1.0 March 31, 2014. Page 16

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

Critical rules

Avoid setting thread priorities

...

Category: Critical > Concurrency > API Misuse

Description: Setting thread priorities to control interactions between threads is not portable, and may not
have the desired effect.

Specifying thread priorities using calls to Thread. set Pri ori ty and Thread. get Pri ori ty iS not portable and may
have adverse consequences such as starvation.

Recommendation

Avoid setting thread priorities to control interactions between threads. Using the default thread priority should be
sufficient for most applications.

However, if you need to enforce a specific synchronization order, use one of the following alternatives:

® Waiting for a notification using the wai t and notifyAl | methods
® Using the java. util.concurrent library

In some cases, calls to Thread. sl eep may be appropriate to temporarily stop execution (provided that there is no
possibility for race conditions), but this is not generally recommended.

References

* J. Bloch, Effective Java (second edition), ltem 72. Addison-Wesley, 2008.
® Inform IT: Adding Multithreading Capability to Your Java Applications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 17

http://www.informit.com/articles/article.aspx?p=26326&seqNum=5

Critical rules

Avoid using 'notify"

Category: Critical > Concurrency > API Misuse

Description: Calling 'notify' instead of 'notifyAll' may fail to wake up the correct thread and cannot wake up
multiple threads. :

Calls to the noti fy method rather than noti fyal I may fail to wake up the correct thread if an object's monitor
(intrinsic lock) is used for multiple conditions. not i fy only wakes up a single arbitrary thread that is waiting on the
object's monitor, whereas noti fyAl I wakes up all such threads.

Recommendation

Ensure that the call to noti fy instead of noti fyAl | is a correct and desirable optimization. If not, call noti fyAl |
instead.

Example

In the following example, the methods produce and consune both use noti fy to tell any waiting threads that an
object has been added or removed from the buffer. However, this means that only one thread is notified. The
woken-up thread might not be able to proceed due to its condition being false, immediately going back to the
waiting state. As a result no progress is made.

1 class Producer Consuner {

2 private static final int MAX_SIZE=3;

3 private List<Object> buf = new ArrayLi st <Obj ect>();
4

5 public synchroni zed voi d produce(Object 0) {
6 whi | e (buf.size()==MAX_SI ZE) {

7 try {

8 wait();

9 }

10 catch (InterruptedException e) {
11

12 }

13 }

14 buf . add(o) ;

15 notify(); // "notify' is used

16 }

17

18 public synchroni zed Object consune() {
19

20 whi | e (buf.size()==0) {

21 try {

22 wait();

23 }

24 catch (InterruptedException e) {
25

26 }

27 }

28 Obj ect o = buf.renove(0);

29 notify(); // "notify' is used

30 return o;

31 }

32}

When using noti fyAl | instead of noti fy, all threads are notified, and if there are any threads that could proceed,
we can be sure that at least one of them will do so.

References

JPL Java Coding Standard v1.0 March 31, 2014. Page 18

Critical rules

® J. Bloch. Effective Java (second edition), p. 277. Addison-Wesley, 2008.
® Java API Documentation: notify(), notifyAll().

JPL Java Coding Standard v1.0 March 31, 2014. Page 19

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notify%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29

Critical rules

Do not call 'Thread.yield’

...

Category: Critical > Concurrency > API Misuse

Description: Calling 'Thread.yield' may have no effect, and is not a reliable way to prevent a thread from
taking up too much execution time.

The method Thread. yi el d is a non-portable and underspecified operation. It may have no effect, and is not a
reliable way to prevent a thread from taking up too much execution time.

Recommendation

Use alternative ways of preventing a thread from taking up too much execution time. Communication between
threads should normally be implemented using some form of waiting for a notification using the wai t and
noti fyAl I methods or by using the j ava. uti|.concurrent library.

In some cases, calls to Thread. sl eep may be appropriate to temporarily cease execution (provided there is no
possibility for race conditions), but this is not generally recommended.

References

* J. Bloch, Effective Java (second edition), Item 72. Addison-Wesley, 2008.
® Java API Documentation: Thread.yield(), Object.wait(), Object.notifyAll(), java.util.concurrent,
Thread.sleep().

JPL Java Coding Standard v1.0 March 31, 2014. Page 20

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#yield%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep%28long%29

Critical rules

Do not spin on field

...

Category: Critical > Concurrency > API Misuse

Description: Repeatedly reading a non-volatile field within the condition of an empty loop may result in an
infinite loop.

Repeatedly reading a non-volatile field within the condition of an empty loop statement may result in an infinite
loop, since a compiler optimization may move this field access out of the loop.

Example

In the following example, the method spi n repeatedly tests the field done in a loop. The method repeats the
while-loop until the value of the field done is set by another thread. However, the compiler could optimize the code
as shown in the second code snippet, because the field done is not marked as vol ati | e and there are no
statements in the body of the loop that could change the value of done. The optimized version of spi n loops
forever, even when another thread would set done t0 t r ue.

1 class Spin {

2 publ i c bool ean done = fal se;
3

4 public void spin() {

5 whi | e(! done) {

6 }

7 }

8 }

9

10 class Spin { // optim zed

11 public bool ean done = fal se;
12

13 public void spin() {

14 bool ean cond = done;
15 whi | e(! cond){

16 }

17 }

18 }

Recommendation

Ensure that access to this field is properly synchronized. Alternatively, avoid spinning on the field and instead use
the wai t and noti fyAl | methods or the java. util.concurrent library to communicate between threads.

References

® The Java Language Specification: Threads and Locks.

JPL Java Coding Standard v1.0 March 31, 2014. Page 21

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html

Critical rules

Do not start a thread in a constructor

Category: Critical > Concurrency > API Misuse

Description: Starting a thread within a constructor may cause the thread to start before any subclass
constructor has completed its initialization, causing unexpected results.

Starting a thread within a constructor may cause unexpected results. If the class is extended, the thread may
start before the subclass constructor has completed its initialization, which may not be intended.

Recommendation

Avoid starting threads in constructors. Typically, the constructor of a class only constructs the thread object, and
a separate st art method should be provided to start the thread object created by the constructor.

Example

In the following example, because the Test constructor implicitly calls the super constructor, the thread created in
the super constructor may start before t hi s. nane has been initialized. Therefore, the program may output "hello "
followed by a null string.

1 class Super {

2 public Super() {

3 new Thread() {

4 public void run() {

5 System out. println(Super.this.toString());
6 }

7 }.start(); // BAD: The thread is started in the constructor of ' Super'.
8 }

9

10 public String toString() {

11 return "hello";

12 }

13 }

14

15 class Test extends Super {

16 private String nang;

17 public Test(String nm {

18 /1 The thread is started before

19 /] this line is run

20 this.name = nm

21 }

22

23 public String toString() {

24 return super.toString() + " " + nang;
25 }

26

27 public static void main(String[] args) {
28 new Test("ny friend");

29 }

30 }

In the following modified example, the thread created in the Super constructor is not started within the constructor;
mai n starts the thread after t hi s. nane has been initialized. This results in the program outputting "hello my friend".

1 class Super {

2 Thread thread;

3 public Super() {

4 thread = new Thread() {

5 public void run() {

6 System out. println(Super.this.toString());

JPL Java Coding Standard v1.0 March 31, 2014. Page 22

7 }

8 I

9

10

11 public void start() { // good

12 thread.start();

13 }

14

15 public String toString() {

16 return "hello";

17 }

18 }

19

20 class Test extends Super {

21 private String nane;

22 public Test(String nm {

23 this.name = nm

24 }

25

26 public String toString() {

27 return super.toString() + " " + nang;
28 }

29

30 public static void main(String[] args) {
31 Test t = new Test("ny friend");
32 t.start();

33 }

34 '}

References

® IBM developerWorks: Don't start threads from within constructors.

JPL Java Coding Standard v1.0 March 31, 2014.

Critical rules

Page 23

http://www.ibm.com/developerworks/java/library/j-jtp0618/index.html#4

Critical rules

Synchronization

Avoid data races by accessing shared variables under synchronization
Avoid empty synchronized blocks

Avoid inconsistent synchronization for ‘writeObject’

Avoid inconsistent synchronization of overriding methods

Avoid synchronizing 'set' but not 'get'

Do not synchronize on a field and update it

JPL Java Coding Standard v1.0 March 31, 2014. Page 24

Critical rules

Avoid data races by accessing shared variables under synchronization

Category: Critical > Concurrency > Synchronization

Description: If a field is mostly accessed in a synchronized context, but occasionally accessed in a
non-synchronized way, the non-synchronized accesses may lead to race conditions.

If a field is mostly accessed in a synchronized context, but occasionally accessed in a non-synchronized way, the
non-synchronized accesses may lead to race conditions.

Recommendation

Ensure that the non-synchronized field accesses are made synchronized, if required.

Example

In the following example, count er is accessed in a synchronized way in all but one cases. If nodi f yCount er is
called by a large number of threads that are running concurrently, the value of count er at the end of each call
may not be zero. This is because the non-synchronized statement could be interleaved with updates to the
counter that are performed by the other threads.

1 class MultiThreadCounter {

2 public int counter = O;

3

4 public void nodifyCounter() {
5 synchroni zed(this) {

6 counter--;

7 }

8 synchroni zed(this) {

9 counter--;

10 }

11 synchroni zed(this) {

12 counter--;

13 }

14 counter = counter + 3; // No synchronization
15 }

16 }

To correct this, the last statement of nodi f yCount er should be enclosed in a synchroni zed statement.

References

® The Java Language Specification: Synchronization.

JPL Java Coding Standard v1.0 March 31, 2014. Page 25

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

Avoid empty synchronized blocks

...

Category: Critical > Concurrency > Synchronization

Description: Empty synchronized blocks may indicate the presence of incomplete code or incorrect
synchronization, and may lead to concurrency problems.

Empty synchronized blocks suspend execution until a lock can be acquired, which is then released immediately.
This is unlikely to achieve the desired effect and may indicate the presence of incomplete code or incorrect
synchronization. It may also lead to concurrency problems.

Recommendation

Check which code needs to be synchronized. Any code that requires synchronization on the given lock should be
placed within the synchronized block.

References

® The Java Language Specification: The synchronized Statement.
® The Java Tutorials: Synchronization.

JPL Java Coding Standard v1.0 March 31, 2014. Page 26

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

Critical rules

Avoid inconsistent synchronization for 'writeObject’

...

Category: Critical > Concurrency > Synchronization

Description: Classes with a synchronized ‘writeObject' method but no other synchronized methods
usually lack a sufficient level of synchronization.

Classes with a synchronized wri t etbj ect method but no other synchronized methods usually lack a sufficient
level of synchronization. If any mutable state of this class can be modified without proper synchronization, the
serialization using the wri t edbj ect method may result in an inconsistent state.

Recommendation

See if synchronization is necessary on methods other than w it eg ect to make the class thread-safe. Any
methods that access or modify the state of an object of this class should usually be synchronized as well.

References

® The Java Language Specification: Synchronization.

JPL Java Coding Standard v1.0 March 31, 2014. Page 27

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

Avoid inconsistent synchronization of overriding methods

...

Category: Critical > Concurrency > Synchronization

Description: If a synchronized method is overridden in a subclass, and the overriding method is not
synchronized, the thread-safety of the subclass may be broken.

If a synchronized method is overridden in a subclass, the compiler does not require the overriding method to be
synchronized. However, if the overriding method is not synchronized, the thread-safety of the subclass may be
broken.

Recommendation

Ensure that the overriding method is synchronized, if necessary.

References

® The Java Language Specification: Synchronization.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 28

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Avoid synchronizing 'set' but not ‘get’

...

Category: Critical > Concurrency > Synchronization

Description: If a class has a synchronized 'set' method, and a similarly-named 'get' method is not also
synchronized, calls to the 'get' method may not return a consistent state for the object.

If a class has a synchronized set method and a similarly-named get method is not also synchronized, calls to the
get method may not return a consistent state for the object.

Recommendation

Synchronize read operations as well as write operations. You should usually synchronize the get method.

References

® The Java Language Specification: Synchronization.

JPL Java Coding Standard v1.0 March 31, 2014. Page 29

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.1

Critical rules

Do not synchronize on afield and update it

...

Category: Critical > Concurrency > Synchronization

Description: Synchronizing on a field and updating that field while the lock is held is unlikely to provide
the desired thread safety.

A block of code that synchronizes on a field and updates that field while the lock is held is unlikely to provide the
desired thread safety. Such a synchronized block does not prevent multiple unsynchronized assignments to that
field because it obtains a lock on the object stored in the field rather than the field itself.

Recommendation

Instead of synchronizing on the field itself, consider synchronizing on a separate lock object when you want to
avoid simultaneous updates to the field. You can do this by declaring a synchronized method and using it for any
field updates.

Example

In the following example, in class A, synchronization takes place on the field that is updated in the body of the
set Fi el d method.

1 public class A {

2 private Object field;

3

4 public void setField(Object 0){

5 synchroni zed (field){ /1 BAD: synchronize on the field to be updated
6 field = o;

7 [l ... nore code ...

8 }

9 }

10 }

In class B, the recommended approach is shown, where synchronization takes place on a separate lock object.

1 public class B {

2 private final Object |ock = new Object();
3 private Object field,

4

5 public void setField(Object 0){

6 synchroni zed (1 ock){ // GOOD: synchronize on a separate |ock object
7 field = o;

8 /1 ... nore code ...

9 }

10 }

11}

References

® The Java Language Specification: The synchronized Statement, synchronized Methods.
® The Java Tutorials: Lock Objects.

JPL Java Coding Standard v1.0 March 31, 2014. Page 30

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.19
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.3.6
http://docs.oracle.com/javase/tutorial/essential/concurrency/newlocks.html

Critical rules

Thread Safety

® Avoid lazy initialization of a static field
® Avoid static fields of type 'DateFormat’ (or its descendants)
® Ensure that a method releases locks on exit

JPL Java Coding Standard v1.0 March 31, 2014. Page 31

Critical rules

Avoid lazy initialization of a static field

Category: Critical > Concurrency > Thread Safety

Description: Initializing a static field without synchronization can be problematic in a multi-threaded
context.

The tactic of initializing a static field the first time it is used, known as "lazy initialization", can be problematic in a
multi-threaded context when used without proper synchronization. If a separate thread starts executing before the
field is initialized, the thread may see an incompletely initialized object.

Recommendation

If lazy initialization is desirable for performance reasons, the best solution is usually to declare the enclosing
method synchr oni zed. Otherwise, avoid lazy initialization and initialize static fields using static initializers. A third
possibility is to declare the field vol ati | e and use the double-checked locking idiom as explained in the article
referenced below. As the article points out, it is crucial to declare the field vol ati | e: double-checked locking by
itself is not correct under the Java memory model.

Example

In the following example, the static field r esour ce is initialized without synchronization.

class Singleton {
private static Resource resource;

1

2

3

4 publ i c Resource get Resource() ({

5 if(resource == null)

6 resource = new Resource(); // Lazily initialize "resource"
7 return resource;

8

9

}

In the following modification of the above example, si ngl et on uses the recommended approach of using a static
initializer to initialize r esour ce.

1 class Singleton {

2 private static Resource resource;
3

4 static {

5 resource = new Resource(); // Initialize "resource" only once
6 }

7

8 publ i c Resource get Resource() {

9 return resource;

10 }

11}

References

® University of Maryland Department of Computer Science: The "Double-Checked Locking is Broken"
Declaration.

JPL Java Coding Standard v1.0 March 31, 2014. Page 32

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Critical rules

Avoid static fields of type 'DateFormat’ (or its descendants)

Category: Critical > Concurrency > Thread Safety

Description: Static fields of type 'DateFormat' (or its descendants) should be avoided because the class
'‘DateFormat' is not thread-safe.

Static fields of type j ava. t ext . Dat eFor mat oOr its descendants should be avoided because the class Dat eFor mat is
not thread-safe.

Recommendation

Use instance fields instead and synchronize access where necessary.

Example

In the following example, Dat eFor mat t i ngThr ead declares a static field dat eF of type Dat eFor mat . When instances
of Dat eFor mat ti ngThr ead are created and run by Dat eFor mat Thr eadUnsaf e, erroneous results are output because
dat eF is shared by all instances of Dat eFor mat ti ngThr ead.

1 class DateFormattingThread inplenents Runnable {
2 private static DateFormat dateF = new Sinpl eDat eFormat ("yyyyMwd"); // Static field declared
3

4 public void run() {

5 for(int i=0; i < 10; i++){

6 try {

7 Date d = dateF. parse("20121221");
8 System out. println(d);

9 } catch (ParseException e) { }

10 }

11 }

12}

13

14 public class DateFornat ThreadUnsafe {

15

16 public static void main(String[] args) {

17 for(int i=0; i<100; i++){

18 new Thread(new Dat eFormattingThread()).start();
19 }

20 }

21

22 '}

In the following modification of the above example, Dat eFor mat t i ngThr ead declares an instance field dat eF of type
Dat eFor mat . When instances of Dat eFor mat t i ngThr ead are created and run by Dat eFor mat Thr eadUnsaf eFi x, correct
results are output because there is a separate instance of dat eF for each instance of Dat eFor mat ti ngThr ead.

1 class DateFormattingThread inplenments Runnable {
2 private DateFornat dateF = new Sinpl eDat eFornmat ("yyyyMwld"); // Instance field declared
3

4 public void run() {

5 for(int i=0; i < 10; i++){

6 try {

7 Date d = dateF. parse("20121221");
8 System out. println(d);

9 } catch (ParseException e) { }

10 }

11 }

12}

13

14 public class DateFormat Thr eadUnsaf eFi x {

JPL Java Coding Standard v1.0 March 31, 2014. Page 33

Critical rules

15

16 public static void nmain(String[] args) {

17 for(int i=0; i<100; i++){

18 new Thread(new Dat eFormattingThread()).start();
19 }

20 }

21

22 '}

References

® Java API Documentation: java.text.DateFormat synchronization.

JPL Java Coding Standard v1.0 March 31, 2014. Page 34

http://docs.oracle.com/javase/6/docs/api/java/text/DateFormat.html#synchronization

Critical rules

Ensure that a method releases locks on exit

...

Category: Critical > Concurrency > Thread Safety

Description: Methods that acquire a lock without releasing it on method exit may cause deadlock.

...

If a method acquires a lock and some of the exit paths from the method do not release the lock then this may
cause deadlock.

Recommendation

Ensure that all exit paths of the method release the lock.

Example

In the following example, Locki ngThr ead. r un acquires a lock but releases it only some of the time, dependent on
the result of a random number generator. This means that, of the 10 threads that are started by

Unr el easedLock. mai n, only the first few are likely to finish running. The first thread to acquire the lock but not
release it prevents the next thread from completing execution.

cl ass LockingThread inpl enents Runnabl e {
private static ReentrantLock | = new ReentrantLock();

1
2
3
4 public void run() {

5 I.lock(); // Acquire |ock

6 Systemout. println("Got |ock");

7 i f(new Randon().nextInt(2) == 0){

8 I .unlock(); // Release |lock only some of the tinme
9 }

10 }

11}

To avoid this problem, Locki ngThr ead. r un should release the lock (using I . unl ock() ;) each time that it is run.

References

® Java API Documentation: java.util.concurrent.Lock.

JPL Java Coding Standard v1.0 March 31, 2014. Page 35

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Lock.html

Critical rules

Waiting

Avoid calling 'Object.wait' while two locks are held

Avoid calling 'Thread.sleep' with a lock held

Avoid calling 'wait' on a 'Condition' interface

Avoid controlling thread interaction by using ineffective or wasteful methods
Do not call 'wait' outside a loop

JPL Java Coding Standard v1.0 March 31, 2014. Page 36

Critical rules

Avoid calling 'Object.wait' while two locks are held

Category: Critical > Concurrency > Waiting

Description: Calling 'Object.wait' while two locks are held may cause deadlock.

...

Calling mj ect . wai t While two locks are held may cause deadlock, because only one lock is released by wai t .

Recommendation

See if one of the locks should continue to be held while waiting for a condition on the other lock. If not, release
one of the locks before calling tbj ect . wai t .

Example

In the following example of the problem, pri nt Text locks both i dLock and t ext Lock before it reads the value of
text . It then calls t ext Lock. wai t , which releases the lock on t ext Lock. However, set Text heeds to lock i dLock but
it cannot because i dLock is still locked by pri nt Text . Thus, deadlock is caused.

1 class WaitWthTwoLocks {

2

3 private final Object idLock = new Cbject();

4 private int id = 0;

5

6 private final Object textLock = new bject();

7 private String text = null;

8

9 public void printText() {

10 synchroni zed (idLock) {

11 synchroni zed (textLock) {

12 whil e(text == null)

13 try {

14 textLock.wait(); // The lock on "textLock" is released but not the
15 /1 lock on "idLock".
16 }

17 catch (InterruptedExceptione) { ... }

18 Systemout.println(id + ":" + text);

19 text = null;

20 t ext Lock. noti fyAl ();

21 }

22 }

23 }

24

25 public void setText(String nesg) {

26 synchroni zed (idLock) { // "setText" needs a lock on "idLock" but "printText" already
27 /1 holds a lock on "idLock", |eading to deadl ock
28 synchroni zed (textLock) {

29 i d++,

30 text = nesg;

31 i dLock. noti fyAll();

32 text Lock. noti fyAl | ();

33 }

34 }

35 }

36}

In the following modification of the above example, i d and text are included in the class Message. The method
print Text synchronizes on the field message before it reads the value of message. t ext . It then calls message. wai t ,
which releases the lock on nessage. This enables set Text to lock message so that it can proceed.

1 class WiitWthTwoLocksGood {

JPL Java Coding Standard v1.0 March 31, 2014. Page 37

Critical rules

2

3 private static class Message {

4 public int id = 0;

5 public String text = null;

6 }

7

8 private final Message nessage = new Message();
9

10 public void printText() {

11 synchroni zed (nessage) {

12 whi | e(message. txt == null)

13 try {

14 nmessage. wai t () ;

15 }

16 catch (InterruptedException e) { ... }
17 Systemout.println(message.id + ":" + message.text);
18 nmessage. text = null;

19 nessage. noti fyAl | ();

20 }

21 }

22

23 public void setText(String nesg) {

24 synchroni zed (nmessage) {

25 nessage. i d++;

26 nmessage. text = nesg;

27 nmessage. noti fyAl | ();

28 }

29 }

30 }

References

® Java API Documentation: Object.wait().

JPL Java Coding Standard v1.0 March 31, 2014. Page 38

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29

Critical rules

Avoid calling 'Thread.sleep’ with a lock held

Category: Critical > Concurrency > Waiting

Description: Calling 'Thread.sleep' with a lock held may lead to very poor performance or even deadlock.

...

Calling Thr ead. sl eep with a lock held may lead to very poor performance or even deadlock. This is because
Thread. sl eep does not cause a thread to release its locks.

Recommendation

Thr ead. sl eep should be called only outside of a synchroni zed block. However, a better way for threads to yield
execution time to other threads may be to use either of the following solutions:

® Thejava.util.concurrent library
® Thewait and notifyA | methods

Example

In the following example of the problem, two threads, St or ageThr ead and o her Thr ead, are started. Both threads
output a message to show that they have started but then st or ageThr ead locks count er and goes to sleep. The
lock prevents & her Thr ead from locking count er, So it has to wait until St or ageThr ead has woken up and unlocked
count er before it can continue.

1 class StorageThread inpl ements Runnabl ef

2 public static Integer counter = O;

3 private static final Object LOCK = new Object();
4

5 public void run() {

6 Systemout.println("StorageThread started.");
7 synchroni zed(LOCK) { // "LOCK" is |ocked just before the thread goes to sleep
8 try {

9 Thr ead. sl eep(5000) ;

10 } catch (InterruptedExceptione) { ... }
11 }

12 Systemout. println("StorageThread exited.");
13 }

14}

15

16 class OQtherThread inplenments Runnabl ef

17 public void run() {

18 Systemout.println("CQherThread started.");
19 synchroni zed(St or ageThr ead. LOCK) {

20 St or ageThr ead. count er ++;

21 }

22 Systemout.println("QherThread exited.");
23 }

24}

25

26 public class SleepWthLock {

27 public static void nmain(String[] args) {

28 new Thread(new StorageThread()).start();

29 new Thread(new O her Thread()).start();

30 }

31}

To avoid this problem, st or ageThr ead should call Thr ead. sl eep outside the synchr oni zed block instead, so that
count er is unlocked.

References

JPL Java Coding Standard v1.0 March 31, 2014. Page 39

Critical rules

® Java API Documentation: Thread.sleep(), Object.wait(), Object.notifyAll(), java.util.concurrent.

JPL Java Coding Standard v1.0 March 31, 2014. Page 40

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep%28long%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html#package_description

Critical rules

Avoid calling 'wait' on a 'Condition’ interface

...

Category: Critical > Concurrency > Waiting

Description: Calling 'wait' on a 'Condition’ interface may result in unexpected behavior and is probably a
typographical error.

Calling wai t on an object of type j ava. uti | . concurrent. | ocks. Condi ti on may result in unexpected behavior
because wai t is a method of the mj ect class, not the Condi ti on interface itself. Such a call is probably a
typographical error: typing "wait" instead of "await".

Recommendation

Instead of bj ect . wai t, use one of the Condi ti on. awai t methods.

References

® Java API Documentation: java.util.concurrent.Condition.

JPL Java Coding Standard v1.0 March 31, 2014. Page 41

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html

Critical rules

Avoid controlling thread interaction by using ineffective or wasteful methods

Category: Critical > Concurrency > Waiting

Description: Calling 'Thread.sleep' to control thread interaction is less effective than waiting for a
notification and may also result in race conditions. Merely synchronizing over shared variables in a loop to
control thread interaction may waste system resources and cause performance problems.

Trying to control thread interaction by periodically calling Thr ead. sl eep within a loop while waiting for a condition
to be satisfied is less effective than waiting for a notification. This is because the waiting thread may either sleep
for an unnecessarily long time or wake up too frequently. This approach may also result in race conditions and,
therefore, incorrect code.

Trying to control thread interaction by repeatedly checking a synchronized data structure without calling
Thr ead. sl eep Or waiting for a notification may waste a lot of system resources and cause noticeable performance
problems.

Recommendation
See if communication between threads can be improved by using either of the following solutions:

® Thejava.util.concurrent library, preferably
® The bject.wait and bj ect. noti fyA | methods

If following one of these recommendations is not feasible, ensure that race conditions cannot occur and precise
timing is not required for program correctness.

Example

In the following example, the Recei ver thread sleeps for an unnecessarily long time (up to five seconds) until it
has received the message.

cl ass Message {
public String text ="";

}

private Message nessage;
publ i c Receiver(Message nsg) {

1

2

3

4

5 class Receiver inplenments Runnable {
6

7

8 thi s. mressage = nsg;

9

}
10 public void run() {
11 whi | e(message. text.iseEmty()) {
12 try {
13 Thread. sl eep(5000); // Sleep while waiting for condition to be satisfied
14 } catch (InterruptedException e) { }
15 }
16 System out. println("Message Received at " + (SystemcurrentTineMIlis()/1000));
17 System out . println(message. text);
18 }
19 }
20
21 class Sender inplenments Runnable {
22 private Message nessage;
23 publ i c Sender (Message nsg) {
24 this. nessage = nsg;
25 }
26 public void run() {
27 System out. println("Mssage sent at " + (SystemcurrentTineMI1is()/1000));
28 nmessage.text = "Hello World";

JPL Java Coding Standard v1.0 March 31, 2014. Page 42

Critical rules

29 }

30 }

31

32 public class BusyWiit {

33 public static void nmain(String[] args) {
34 Message nsg = new Message();

35 new Thr ead(new Recei ver(nsg)).start();
36 new Thread(new Sender (nsg)).start();
37 }

38 }

In the following modification of the above example, the Recei ver thread uses the recommended approach of
waiting for a notification that the message has been sent. This means that the thread can respond immediately
instead of sleeping.

cl ass Message {
public String text ="";

}

private Message message;
public Receiver(Message msg) {

1

2

3

4

5 class Receiver inplenents Runnable {
6

7

8 thi s. ressage = nsg;

9

}
10 public void run() {
11 synchroni zed(message) {
12 whi | e(message. text.isEnpty()) {
13 try {
14 message.wait(); // Vit for a notification
15 } catch (InterruptedException e) { }
16 }
17 }
18 System out. println("Message Received at " + (SystemcurrentTimeMI1is()/1000));
19 System out. printl n(message. text);
20 }
21 }
22
23 class Sender inplenents Runnable {
24 private Message nessage;
25 public Sender (Message nmsg) {
26 thi s. ressage = nsg;
27 }
28 public void run() {
29 System out. println("Message sent at " + (SystemcurrentTineMI1is()/1000));
30 synchroni zed(message) {
31 nessage.text = "Hello World";
32 message. notifyAll (); // Send notification
33 }
34 }
35 }
36
37 public class BusyWiit {
38 public static void main(String[] args) {
39 Message msg = new Message();
40 new Thread(new Recei ver(nmsg)).start();
41 new Thread(new Sender (nsg)).start();
42 }
43 '}
References

* J. Bloch, Effective Java (second edition), ltem 72. Addison-Wesley, 2008.
® Java APl Documentation: Object.wait(), Object.notifyAll(), java.util.concurrent.
® The Java Tutorials: Guarded Blocks, High Level Concurrency Objects.

JPL Java Coding Standard v1.0 March 31, 2014. Page 43

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#notifyAll%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html#package_description
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/highlevel.html

Critical rules

Do not call 'wait' outside a loop

...

Category: Critical > Concurrency > Waiting

Description: Calling 'wait' outside a loop may result in the program continuing before the expected
condition is met.

Calling mj ect . wai t outside of a loop may cause problems because the thread does not go back to sleep after a
spurious wake-up call. This results in the program continuing before the expected condition is met.

Recommendation

Ensure that wai t is called within a loop that tests for the condition that the thread is waiting for. This ensures that
the program only proceeds to execute when the relevant condition is true. Note that the thread that calls wai t on
an object must be the owner of that object's monitor.

Example

In the following example, obj . wai t is called within a whi | e loop until the condition is true, at which point the
program continues with the next statement after the loop:

1 synchroni zed (obj) {

2 while (<condition is false>) obj.wait();

3 /] condition is true, performappropriate action ...
4}

References

® J. Bloch, Effective Java (second edition), p. 276. Addison-Wesley, 2008.
® Java API Documentation: Object.wait().
® The Java Tutorials: Guarded Blocks.

JPL Java Coding Standard v1.0 March 31, 2014. Page 44

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#wait%28%29
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Critical rules

Declarations

Avoid ambiguity when calling a method that is in both a superclass and an outer class
Avoid confusing non-override of package-private method

Avoid hiding a field in a super class

Include 'break’ in a ‘case’ statement

JPL Java Coding Standard v1.0 March 31, 2014. Page 45

Critical rules

Avoid ambiguity when calling a method that is in both a superclass and an outer class

...

Category: Critical > Declarations

Description: An unqualified call to a method that exists with the same signature in both a superclass and
an outer class is ambiguous.

If a call is made to a method from an inner class A, and a method of that name is defined in both a superclass of
A and an outer class of A, it is not clear to a programmer which method is intended to be called.

Example

In the following example, it is not clear whether the call to pri nt Message calls the method that is defined in qut er
Or Super.

1 public class CQuter

2 A

3 voi d printMessage() {

4 Systemout.println("Quter");

5 }

6

7 cl ass | nner extends Super

8 {

9 voi d anbi guous() {

10 print Message(); // Anbiguous call
11 }

12 }

13

14 public static void main(String[] args) {
15 new CQuter().new | nner().anbi guous();
16 }

17 '}

18

19 class Super

20 {

21 voi d printMessage() {

22 System out . println("Super");

23 }

24}

Inherited methods take precedence over methods in outer classes, so the method in the superclass is called.
However, such situations are a potential cause of confusion and defects.

Recommendation
Resolve the ambiguity by explicitly qualifying the method call:

® To specify the outer class, prefix the method with cuter. this. .
® To specify the superclass, prefix the method with super-. .

In the above example, the call to pri nt Message could be replaced by either cuter. t hi s. pri nt Message Or
super . pri nt Message, depending on which method you intend to call. To preserve the behavior in the example, use
super. pri nt Message.

References

® Inner Classes Specification: What are top-level classes and inner classes?.

JPL Java Coding Standard v1.0 March 31, 2014. Page 46

http://tns-www.lcs.mit.edu/manuals/java-1.1.1/guide/innerclasses/spec/innerclasses.doc1.html

Critical rules

Avoid confusing non-override of package-private method

...

Category: Critical > Declarations

Description: A method that appears to override another method but does not, because the declaring
classes are in different packages, is potentially confusing.

If a method is declared with default access (that is, not private, protected, nor public), it can only be overridden by
methods in the same package. If a method of the same signature is defined in a subclass in a different package,
it is a completely separate method and no overriding occurs.

Code like this can be confusing for other programmers, who have to understand that there is no overriding
relation, check that the original programmer did not intend one method to override the other, and avoid mixing up
the two methods by accident.

Recommendation

In cases where there is intentionally no overriding, the best solution is to rename one or both of the methods to
clarify their different purposes.

If one method is supposed to override another method that is declared with default access in another package,
the access of the method must be changed to publi ¢ or prot ect ed. Alternatively, the classes must be moved to
the same package.

Example

In the following example, Phot oResi zer W dget . wi dt h does not override W dget . wi dt h because one method is in
package gui and one method is in package gui . extras.

1 // File1l

2 package gui;

3

4 abstract class Wdget
51

6 /1

7

8 /1 Return the width (in pixels) of this wi dget
9 int width() {

10 /1

11 }

12

13 /1

14 }

15

16 /1 File 2
17 package gui.extras;

18

19 cl ass PhotoResi zer Wdget extends W dget
20 {

21 /1

22

23 /1 Return the new width (of the photo when resized)
24 public int width() {

25 /1

26 }

27

28 /1

29 1}

JPL Java Coding Standard v1.0 March 31, 2014. Page 47

Critical rules

Assuming that no overriding is intentional, one or both of the methods should be renamed. For example,
Phot oResi zer W dget . wi dt h would be better named Phot oResi zer W dget . newPhot oW dt h.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 8.4.8.1 Overriding (by Instance Methods).

JPL Java Coding Standard v1.0 March 31, 2014. Page 48

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1

Critical rules

Avoid hiding a field in a super class

...

Category: Critical > Declarations

Description: Hiding a field in a superclass by redeclaring it in a subclass might be unintentional,
especially if references to the hidden field are not qualified using 'super".

A field that has the same name as a field in a superclass hides the field in the superclass. Such hiding might be
unintentional, especially if there are no references to the hidden field using the super qualifier. In any case, it
makes code more difficult to read.

Recommendation

Ensure that any hiding is intentional. For clarity, it may be better to rename the field in the subclass.

Example

In the following example, the programmer unintentionally added an age field to Enpl oyee, which hides the age field
in Per son. The constructor in Per son sets the age field in Person to 20 but the age field in Enpl oyee is still 0. This
means that the program outputs 0, which is probably not what was intended.

1 public class FieldvasksSuperField {

2 static class Person {

3 protected int age;

4 public Person(int age)

5 {

6 this.age = age;

7 }

8 }

9

10 static class Enpl oyee extends Person {

11 protected int age; // This field hides 'Person.age'.
12 protected int nunber O Year sEnpl oyed;

13 public Enpl oyee(int age, int nunber O Year sEnpl oyed)
14 {

15 super (age);

16 t hi s. nunber Of Year senpl oyed = nunber O Year sénpl oyed,;
17 }

18 }

19

20 public static void main(String[] args) {

21 Enpl oyee e = new Enpl oyee(20, 2);

22 System out. println(e. age);

23 }

24 '}

To fix this, delete the declaration of age on line 11.

References

* Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® The Java Tutorials: Hiding Fields.

JPL Java Coding Standard v1.0 March 31, 2014. Page 49

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/IandI/hidevariables.html

Critical rules

Include 'break’ in a 'case' statement

...

Category: Critical > Declarations

Description: A 'case' statement that does not contain a 'break’ statement allows execution to ‘fall through'
to the next 'case’, which may not be intended.

In a swi t ch statement, execution 'falls through' from one case to the next, unless the case ends with a br eak
statement. A common programming error is to forget to insert a br eak at the end of a case.

Recommendation

End each case with a br eak statement or, if execution is supposed to fall through to the next case, comment the
last line of the case with the following comment: /* falls through */

Such comments are not required for a completely empty case that is supposed to share the same implementation
with the subsequent case.

Example

In the following example, the PI NG case is missing a br eak statement. As a result, after repl y is assigned the value
of Message. PONG, execution falls through to the TI MecuT case. Then the value of repl y is erroneously assigned the
value of Message. PI NG. To fix this, insert br eak; at the end of the PI NG case.

1 class Server

2 A

3 public void respond(Event event)
4 {

5 Message reply = null;

6 switch (event) {

7 case PI NG

8 reply = Message. PONG

9 /1 Mssing 'break' statenent
10 case TI MEQOUT:

11 reply = Message. Pl NG
12 case PONG

13 /'l No reply needed

14 }

15 if (reply !'=null)

16 send(reply);

17 }

18

19 private void send(Message nessage) {
20 /1

21 }

22}

23

24 enum Event { PING PONG TIMEQUT }
25 enum Message { PING PONG }

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 23. Addison-Wesley,
2005.

® Code Conventions for the Java Programming Language: 7.8 switch Statements.

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 50

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#468
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Encapsulation

® Avoid casting from an abstract collection to a concrete implementation type
® Avoid declaring array constants
® Avoid defining an interface (or abstract class) only to hold constants

JPL Java Coding Standard v1.0 March 31, 2014. Page 51

Critical rules

Avoid casting from an abstract collection to a concrete implementation type

...

Category: Critical > Encapsulation

Description: A cast from an abstract collection to a concrete implementation type makes the code brittle.

...

Most collections in the Java standard library are defined by an abstract interface (for example j ava. util. Li st or
java. util. Set), which is implemented by a range of concrete classes and a range of wrappers. Normally, except
when constructing an object, it is better to use the abstract types because this avoids assumptions about what
the implementation is.

A cast from an abstract to a concrete collection makes the code brittle by ensuring it works only for one possible
implementation class and not others. Usually, such casts are either an indication of over-reliance on concrete
implementation types, or of the fact that the wrong abstract type was used.

Recommendation

It is usually best to use the abstract type consistently in variable, field and parameter declarations.

There may be individual exceptions. For example, it is common to declare variables as Li nkedHashSet rather than
Set when the iteration order matters and only the Li nkedHashSet implementation provides the right behavior.

Example

The following example illustrates a situation where the wrong abstract type is used. The Li st interface does not
provide a pol I method, so the original code casts queue down to the concrete type Li nkedLi st , which does. To

avoid this downcasting, simply use the correct abstract type for this method, namely Queue. This documents the
intent of the programmer and allows for various implementations of queues to be used by clients of this method.

1 Customer get Next (List<Custoner> queue) {

2 if (queue == null)

3 return null;

4 Li nkedLi st <Cust ormrer > nmyQueue = (LinkedLi st<Customer>)queue; // AVO D: Cast to concrete type.
5 return nyQueue. pol |l ();

6 }

7

8 Custoner getNext (Queue<Custoner> queue) {

9 if (queue == null)

10 return null;

11 return queue.poll(); // GOOD: Use abstract type.
12}

References

® J. Bloch, Effective Java (second edition), ltem 52. Addison-Wesley, 2008.
® Java 6 API Specification: Collection.

JPL Java Coding Standard v1.0 March 31, 2014. Page 52

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html

Critical rules

Avoid declaring array constants

...

Category: Critical > Encapsulation

Description: Array constants are mutable and can be changed by malicious code or by accident.

Constant values are typically represented by public, static, final fields. When defining several related constants, it
is sometimes tempting to define a public, static, final field with an array type, and initialize it with a list of all the
different constant values.

However, the final keyword applies only to the field itself (that is, the array reference), and not to the contents of
the array. This means that the field always refers to the same array instance, but each element of the array may
be modified freely. This possibly invalidates important assumptions of client code.

Recommendation

Where possible, avoid declaring array constants. If there are only a few constant values, consider using a named
constant for each one, or defining them in an enumtype.

If you genuinely need to refer to a long list of constants with the same name and an index, consider replacing the
array constant with a constant of type Li st to which you assign an unmodifiable collection. See the example for
ways of achieving this.

Example

In the following example, public static final applies only to RGB itself, not the constants that it contains.

1 public class Display {

2 // AVO D: Array constant is vulnerable to nutation.
3 public static final String[] RGEB = {

4 "FFO000", "OOFFO0", "OOOOFF"

5 }s

6

7 void f() {

8 /'l Re-assigning the "constant" is |egal.
9 RGB[0] = "OOFFFF";

10 }

11}

The following example shows examples of ways to declare constants that avoid this problem.

1 // Solution 1: Extract to individual constants

2 public class Display {

3 public static final String RED = "FF0000";

4 public static final String GREEN = "O0OFF00";

5 public static final String BLUE = "000O0FF";

6 }

7

8 // Solution 2: Define constants using in an enumtype
9 public enum Di spl ay

10 {

11 RED (" FF0000"), GREEN ("OOFF00"), BLUE ("OO000FF");
12

13 private String rgb;

14 private Display(int rgbh) {

15 this.rgb = rgb;

16 }

17 public String get RGB(){

18 return rgb;

19 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 53

Critical rules

20 }

21

22 /] Solution 3: Use an unnodifiable collection
23 public class Display {

24 public static final List<String> RGB =
25 Col | ecti ons. unnodi fi abl eLi st (
26 Arrays. asLi st (" FFO000",
27 "00FF00",

28 "0000FF"));

29 }

30

31 // Solution 4: Use a utility method
32 public class Wils {

33 public static <T> List<T> constList(T... values) {
34 return Coll ections.unnodifiabl eLi st (

35 Arrays. asLi st (val ues));

36 }

37 }

38

39 public class Display {

40 public static final List<String> RGB =

41 Utils.constlList("FF0O000", "OOFFO0", "OOOOFF");
42}

References

® J. Bloch, Effective Java (second edition), p. 70. Addison-Wesley, 2008.
® Java Language Specification: 4.12.4 final Variables.

JPL Java Coding Standard v1.0 March 31, 2014. Page 54

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.4

Critical rules

Avoid defining an interface (or abstract class) only to hold constants

...

Category: Critical > Encapsulation

Description: Defining an interface (or abstract class) only to hold a number of constant definitions is bad
practice.

Definitions of constants (meaning static, final fields) should be placed in an appropriate class where they belong
logically. It is usually bad practice to define an interface (or abstract class) only to hold a number of constant
definitions.

This often arises when a developer tries to put the constant definitions into scope by just implementing the
interface (or extending the abstract class) that defines them.

Recommendation

The preferred way of putting the constant definitions into scope is to use the i nport stati ¢ directive, which allows
a compilation unit to put any visible static members from other classes into scope.

This issue is discussed in [Bloch]:

That a class uses some constants internally is an implementation detail. Implementing a
constant interface causes this implementation detail to leak into the classes exported API. It is of
no consequence to the users of a class that the class implements a constant interface. In fact, it
may even confuse them. Worse, it represents a commitment: if in a future release the class is
modified so that it no longer needs to use the constants, it still must implement the interface to
ensure binary compatibility.

To prevent this pollution of a class's binary interface, it is best to move the constant definitions to whatever
concrete class uses them most frequently. Users of the definitions could use i nport static to access the relevant
fields.

Example

In the following example, the interface mat hConst ant s has been defined only to hold a constant.

1 public class NoConstantsOnly {

2 static interface MathConstants

3 {

4 public static final Double Pi = 3.14;
5 }

6

7 static class Circle inplenents Mt hConstants
8 {

9 publ i c doubl e radi us;

10 public double area()

11 {

12 return Math.pow(radius, 2) * Pi;
13 }

14 }

15 }

Instead, the constant should be moved to the G rcl e class or another class that uses the constant frequently.

JPL Java Coding Standard v1.0 March 31, 2014. Page 55

Critical rules

References

® J. Bloch, Effective Java (second edition), ltem 19. Addison-Wesley, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 56

Critical rules

Equality

Avoid comparing arrays using 'Object.equals’

Avoid comparing object identity of boxed types

Avoid comparing object identity of strings

Avoid hashed instances that do not define 'hashCode'

Avoid overriding ‘compareTo' but not 'equals’

Avoid overriding only one of 'equals' and 'hashCode'

Avoid possible inconsistency due to 'instanceof' in 'equals'

Avoid reference comparisons with operands of type 'Object’

Avoid unintentionally overloading 'Object.equals’

Do not make calls of the form 'x.equals(y)' with incomparable types
Ensure that an implementaton of 'equals’ inspects its argument type

JPL Java Coding Standard v1.0 March 31, 2014. Page 57

Critical rules

Avoid comparing arrays using 'Object.equals’

...

Category: Critical > Equality

Description: Comparing arrays using the '‘Object.equals’ method checks only reference equality, which is
unlikely to be what is intended.

Code that compares arrays using the oj ect . equal s method checks only reference equality. This is unlikely to be
what is intended.

Recommendation

To compare the lengths of the arrays and the corresponding pairs of elements in the arrays, use one of the
comparison methods from j ava. util. Arrays:

® The method Arrays. equal s performs a shallow comparison. That is, array elements are compared using
equal s.

® The method Arrays. deepEqual s performs a deep comparison, which is appropriate for comparisons of
nested arrays.

Example

In the following example, the two arrays are first compared using the Obj ect . equal s method. Because this checks
only reference equality and the two arrays are different objects, j ect . equal s returns f al se. The two arrays are
then compared using the Arrays. equal s method. Because this compares the length and contents of the arrays,
Arrays. equal s returns true.

1 public void arrayExanpl e(){

2 String[] arrayl = new String[]{"a", "b", "c"};

3 String[] array2 = new String[]{"a", "b", "c"};

4

5 /1 Reference equality tested: prints 'false'

6 Systemout. println(arrayl. equal s(array2));

7

8 /1 Equality of array elenments tested: prints 'true'
9 System out. println(Arrays. equal s(arrayl, array2));
10 }

References

* Java API Documentation: Arrays.equals(), Arrays.deepEquals(), Object.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 58

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

Avoid comparing object identity of boxed types

...

Category: Critical > Equality

Description: Comparing two boxed primitive values using the == or != operator compares object identity,
which may not be intended.

Comparing two boxed primitive values using == or ! = compares object identity, which may not be intended.

Recommendation

Usually, you should compare non-primitive objects, for example boxed primitive values, by using their equal s
methods.

Example

With the following definition, the method call r ef Eq(new I nteger (2), new Integer(2)) returns f al se because the
objects are not identical.

1 bool ean refEq(Integer i, Integer j) {

2 returni == j;

3}

With the following definition, the method call r eal Eq(new I nteger (2), new I nteger(2)) returns true because the
objects contain equal values.

1 bool ean real Eq(Integer i, Integer j) {
2 return i.equals(j);

3}

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 32. Addison-Wesley,
2005.
* Java APl Documentation: Object.equals(), Integer.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 59

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#equals%28java.lang.Object%29

Critical rules

Avoid comparing object identity of strings

...

Category: Critical > Equality

Description: Comparing two strings using the == or != operator compares object identity, which may not
be intended.

Comparing two st ri ng objects using == or ! = compares object identity, which may not be intended. The same
sequence of characters can be represented by two distinct stri ng objects.

Recommendation

To see if two String objects represent the same sequence of characters, you should usually compare the objects
by using their equal s methods.

Example

With the following definition, the method call ref Eq(“Hel 1 o Wrld", new String("Hello Wrld")) returns fal se
because the objects are not identical.

1 boolean refEq(String s1, String s2) {
2 return sl == s2;
3}

With the following definition, the method call real Eq(“Hel 1 0 Worl d*, new String("Hello Wrld")) returns true
because the objects contain equal values.

1 boolean real Eq(String sl1, String s2) {
2 return sl. equal s(s2);
3

}

References

® Java API Documentation: String.equals(), String.intern().
® The Java Language Specification: 15.21.3, 3.10.5, 15.28.

JPL Java Coding Standard v1.0 March 31, 2014. Page 60

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#intern%28%29
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.21.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.5
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.28

Critical rules

Avoid hashed instances that do not define 'hashCode'

...

Category: Critical > Equality

Description: Classes that define an 'equals' method but no ‘hashCode' method, and whose instances are
stored in a hashing data structure, can lead to unexpected results.

Classes that define an equal s method but no hashCode method can lead to unexpected results if instances of
those classes are stored in a hashing data structure. Hashing data structures expect that hash codes fulfill the
contract that two objects that equal s considers equal should have the same hash code. This contract is likely to
be violated by such classes.

Recommendation

Every class that implements a custom equal s method should also provide an implementation of hashCode.

Example

In the following example, class Poi nt has no implementation of hashCode. Calling hashCode on two distinct Poi nt
objects with the same coordinates would probably result in different hash codes. This would violate the contract
of the hashCode method, in which case objects of type Poi nt should not be stored in hashing data structures.

1 class Point {

2 int x;

3 int y;

4

5 Point(int x, int y) {

6 this.x = x;

7 this.y =vy;

8 }

9

10 publ i c bool ean equal s(Object o) {
11 if (!(o instanceof Point)) return false;
12 Point g = (Point)o;

13 return x == g.X &y == Qq.Y;
14 }

15 }

In the modification of the above example, the implementation of hashCode for class Poi nt is suitable because the
hash code is computed from exactly the same fields that are considered in the equal s method. Therefore, the
contract of the hashCode method is fulfilled.

1 class Point {

2 int x;

3 int y;

4

5 Point(int x, int y) {

6 this.x = x;

7 this.y = vy;

8 }

9

10 publ i c bool ean equal s(oj ect 0) {

11 if (!(o instanceof Point)) return false;
12 Point q = (Point)o;

13 return x == g.X &y == q.Y;

14 }

15

16 /1 1nmpl enent hashCode so that equivalent points (with the same values of x and y) have the
17 /| same hash code

JPL Java Coding Standard v1.0 March 31, 2014. Page 61

18 public int hashCode() {
19 int hash = 7;

20 hash = 31*hash + x;
21 hash = 31*hash + vy;
22 return hash;

23 }

24}

References

® J. Bloch, Effective Java (second edition), Iltem 9. Addison-Wesley, 2008.
® Java API Documentation: Object.equals, Object.hashCode.
® IBM developerWorks: Java theory and practice: Hashing it out.

JPL Java Coding Standard v1.0 March 31, 2014.

Critical rules

Page 62

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
http://www.ibm.com/developerworks/java/library/j-jtp05273/index.html

Critical rules

Avoid overriding ‘compareTo' but not ‘equals’

...

Category: Critical > Equality

Description: If a class overrides ‘compareTo' but not ‘equals’, it may mean that ‘compareTo' and ‘equals’
are inconsistent.

A class that overrides conpar eTo but not equal s may not implement a natural ordering that is consistent with
equal s.

Recommendation

Although this consistency is not strictly required by the conpar eTo contract, usually both methods should be
overridden to ensure that they are consistent, that is, that x. conpar eTo(y) ==0 is t rue if and only if x. equal s(y) is
true, for any non-null x and y.

Example

In the following example, the class I nconsi st ent Conpar eTo overrides conpar eTo but not equal s.

1 public class InconsistentConpareTo inplenments Conparabl e<l nconsi st ent Conpar eTo> {
2 private int i = 0;

3 public I nconsi st ent ConpareTo(int i) {

4 this.i =1i;

5 }

6

7 public int conpareTo(lnconsi stentConpareTo rhs) {

8 returni - rhs.i;

9 }

10 }

In the following example, the class I nconsi st ent Conpar eToFi x overrides both conpar eTo and equal s.

1 public class InconsistentConpareToFix inplenents Conparabl e<l nconsi st ent Conpar eToFi x> {
2 private int i = 0;

3 public InconsistentConpareToFi x(int i) {

4 this.i =1i;

5 }

6

7 public int conpareTo(lnconsi stent ConpareToFi x rhs) {

8 returni - rhs.i;

9 }

10

11 public bool ean equal s(Il nconsi st ent Conpar eToFi x rhs) {
12 return i ==rhs.i;

13 }

14 '}

If you require a natural ordering that is inconsistent with equal s, you should document it clearly.

References

® J. Bloch, Effective Java (second edition), ltem 12. Addison-Wesley, 2008.
® Java API Documentation: Comparable.compareTo, Comparable, Object.equals.

JPL Java Coding Standard v1.0 March 31, 2014. Page 63

http://docs.oracle.com/javase/6/docs/api/java/lang/Comparable.html#compareTo%28T%29
http://java.sun.com/javase/6/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

Avoid overriding only one of 'equals' and 'hashCode'

...

Category: Critical > Equality

Description: If a class overrides only one of ‘equals' and 'hashCode’, it may mean that ‘equals' and
'hashCode' are inconsistent.

A class that overrides only one of equal s and hashCode is likely to violate the contract of the hashcode method. The
contract requires that hashCode gives the same integer result for any two equal objects. Not enforcing this property
may cause unexpected results when storing and retrieving objects of such a class in a hashing data structure.

Recommendation

Usually, both methods should be overridden to ensure that they are consistent.

Example

In the following example, the class | nconsi st ent Equal sHashCode overrides hashCode but not equal s.

1 public class Inconsistent Equal sHashCode {

2 private int i = 0;

3 public I nconsi st ent Equal sHashCode(int i) {
4 this.i =1i;

5 }

6

7 public int hashCode() {

8 return i;

9 }

10 }

In the following example, the class I nconsi st ent Equal sHashCodeFi x overrides both hashCode and equal s.

1 public class InconsistentEqual sHashCodeFi x {

2 private int i = 0;

3 publ i c | nconsi st ent Equal sHashCodeFi x(int i) {

4 this.i =1i;

5 }

6

7 @verride

8 public int hashCode() {

9 return i;

10 }

11

12 @verride

13 publ i c bool ean equal s(Object obj) {

14 if (obj == null)

15 return fal se;

16 if (getCass() != obj.getd ass())

17 return fal se;

18 I nconsi st ent Equal sHashCodeFi x that = (I nconsi st ent Equal sHashCodeFi x) obj ;

19 return this.i == that.i;

20 }

21}

References
® J. Bloch, Effective Java (second edition), Iltem 9. Addison-Wesley, 2008.
® Java API Documentation: Object.equals, Object.hashCode.
® |BM developerWorks: Java theory and practice: Hashing it out.
[]

Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 64

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
http://www.ibm.com/developerworks/java/library/j-jtp05273/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Avoid possible inconsistency due to 'instanceof' in '‘equals’

...

Category: Critical > Equality

Description: Implementations of ‘equals’ that use 'instanceof' to test the type of the argument and are
further overridden in a subclass are likely to violate the 'equals' contract.

Implementations of equal s that use i nst anceof to check the type of their argument are likely to lead to
non-symmetric definitions of equal s, if they are further overridden in subclasses that add fields and redefine
equal s. A definition of the equal s method should be reflexive, symmetric, and transitive, and a violation of the
equal s contract may lead to unexpected behavior.

Recommendation
Consider using one of the following options:

® Check the type of the argument using get d ass instead of i nst anceof .

® Declare the class or the equal s method fi nal . This prevents the creation of subclasses that would
otherwise violate the equal s contract.

® Replace inheritance by composition. Instead of a class B extending a class A, class B can declare a field of
type Ain addition to any other fields.

The first option has the disadvantage of violating the substitution principle of object-oriented languages, which
says that an instance of a subclass of A can be provided whenever an instance of class A is required.

Example

The first option is illustrated in the following example:

1 class BadPoint {

2 int x;

3 int vy;

4

5 BadPoi nt (int x, int y) {

6 this.x = x;

7 this.y =vy;

8 }

9

10 public bool ean equal s(oj ect 0) {

11 if(!(o instanceof BadPoint))

12 return fal se;

13 BadPoi nt g = (BadPoint) o;

14 return x == Qq.Xx & y == q.Y;

15 }

16 }

17

18 cl ass BadPoi nt Ext extends BadPoi nt {

19 String s;

20

21 BadPoi nt Ext (int x, int y, String s) {
22 super (X, Y);

23 this.s = s;

24 }

25

26 /'l violates symetry of equals contract
27 public bool ean equal s(oj ect 0) {

28 if(!(o instanceof BadPointExt)) return false;
29 BadPoi nt Ext q = (BadPoi nt Ext) o;

30 return super.equal s(0) & (q.s==null ? s==null : q.s.equals(s));

JPL Java Coding Standard v1.0 March 31, 2014. Page 65

Critical rules

31 }

32}

33

34 cl ass GoodPoint {

35 int x;

36 int y;

37

38 GoodPoi nt (int x, int y) {

39 this.x = x;

40 this.y = vy;

41 }

42

43 publ i c bool ean equal s(oj ect 0) {

44 if (o!=null & getd ass() == o.getd ass()) {
45 GoodPoi nt q = (GoodPoi nt) o;

46 return x == g.X &y == q.Y;

47 }

48 return fal se;

49 }

50 }

51

52 cl ass GoodPoi nt Ext extends GoodPoint {

53 String s;

54

55 GoodPoi ntExt (int x, int y, String s) {

56 super (X, Yy);

57 this.s = s;

58 }

59

60 publ i c bool ean equal s(Object o) {

61 if (o!=null & getC ass() == o.getd ass()) {
62 GoodPoi nt Ext g = (GoodPoi nt Ext) o;
63 return super.equal s(o) & (g.s==null ? s==null : g.s.equals(s));
64 }

65 return fal se;

66 }

67 }

68

69 BadPoint p = new BadPoint(1, 2);

70 BadPoi nt Ext q = new BadPointExt(1, 2, "info");

Given the definitions in the example, p. equal s(q) returns true whereas q. equal s(p) returns f al se, which violates
the symmetry requirement of the equal s contract.

Attempting to enforce symmetry by modifying the BadPoi nt Ext . equal s method to ignore the field s when its
parameter is an instance of type BadpPoi nt results in violating the transitivity requirement of the equal s contract.

The classes GoodPoi nt and GoodPoi nt Ext avoid violating the equal s contract by using get d ass rather than
i nstanceof .

References

J. Bloch, Effective Java (second edition), Items 8 and 16. Addison-Wesley, 2008.
Java API Documentation: Object.equals().

The Java Language Specification: Type Comparison Operator instanceof.
Artima Developer: How to Write an Equality Method in Java.

JPL Java Coding Standard v1.0 March 31, 2014. Page 66

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.20.2
http://www.artima.com/lejava/articles/equality.html

Critical rules

Avoid reference comparisons with operands of type 'Object'

Category: Critical > Equality

Description: Reference comparisons (== or !=) with operands where the static type is 'Object' may not
work as intended.

Reference comparisons (== or ! =) with operands where the static type is j ect may not work as intended.
Reference comparisons check if two objects are identical. To check if two objects are equivalent, use
bj ect . equal s instead.

Recommendation

Use vj ect . equal s instead of == or ! =, and override the default behavior of the method in a subclass, so that it
uses the appropriate notion of equality.

References

® Java API Documentation: Object.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 67

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29

Critical rules

Avoid unintentionally overloading 'Object.equals’

...

Category: Critical > Equality

Description: Defining 'Object.equals’, where the parameter of ‘equals’ is not of the appropriate type,
overloads 'equals' instead of overriding it.

Classes that define an equal s method whose parameter type is not aj ect overload the j ect . equal s method
instead of overriding it. This may not be intended.

Recommendation

To override the j ect . equal s method, the parameter of the equal s method must have type bj ect .

Example

In the following example, the definition of class Badpoi nt does not override the j ect . equal s method. This
means that p. equal s(q) resolves to the default definition of j ect . equal s and returns f al se. Class GoodPoi nt
correctly overrides vj ect . equal s, SO that r. equal s(s) returns true.

1 class BadPoint {

2 int x;

3 int vy;

4

5 BadPoint (int x, int y) {

6 this.x = x;

7 this.y =vy;

8 }

9

10 /1 overl oaded equal s nethod -- should be avoi ded
11 publ i c bool ean equal s(BadPoint q) {
12 return x == g.X & y == q.Y,;
13 }

14}

15

16 BadPoint p = new BadPoint(1, 2);
17 Object g = new BadPoint (1, 2);
18 bool ean badEqual s = p.equal s(q); // evaluates to false

19

20 cl ass GoodPoint {

21 int x;

22 int y;

23

24 GoodPoint (int x, int y) {

25 this.x = x;

26 this.y =vy;

27 }

28

29 /'l correctly overrides Object.equal s(bject)
30 public bool ean equal s(bj ect obj) {

31 if (obj '= null &&% getC ass() == obj.getd ass()) {
32 GoodPoi nt q = (GoodPoi nt) obj ;

33 return x == g.X &y == Qq.Y;

34 }

35 return fal se;

36 }

37 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 68

Critical rules

38

39 CGoodPoint r = new GoodPoint(1, 2);

40 Object s = new GoodPoint (1, 2);

41 bool ean goodEqual s = r.equal s(s); // evaluates to true

References

® J. Bloch, Effective Java (second edition), ltem 8. Addison-Wesley, 2008.
® The Java Language Specification: Overriding (by Instance Methods), Overloading.
® The Java Tutorials: Overriding and Hiding Methods.

JPL Java Coding Standard v1.0 March 31, 2014. Page 69

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9
http://docs.oracle.com/javase/tutorial/java/IandI/override.html

Critical rules

Do not make calls of the form 'x.equals(y)' with incomparable types

...

Category: Critical > Equality

Description: Calls of the form 'x.equals(y)', where the types of 'x' and 'y' are incomparable, should always
return ‘false'.

Calls of the form x. equal s(y), where x and y have incomparable types, should always return f al se because the
runtime types of x and y will be different. Two types are incomparable if they are distinct and do not have a
common subtype.

Recommendation

Ensure that such comparisons use comparable types.

Example

In the following example, the call to equal s on line 5 refers to the whole array by mistake, instead of a specific
element. Therefore, "Value not found" is returned.

1 String[] anArray = new String[]{"a","b","c"}
2 String valueToFind = "b";

3

4 for(int i=0; i<anArray.length; i++){

5 i f (anArray. equal s(val ueToFi nd) { /1 anArray[i].equal s(val ueToFi nd) was intended
6 return "Found value at index " + i;

7}

8 }

9

10 return "Value not found";

References

® Java API Documentation: Object.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 70

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

Critical rules

Ensure that an implementaton of 'equals’ inspects its argument type

Category: Critical > Equality

Description: An implementation of 'equals’ that does not check the type of its argument may lead to failing
casts. :

An implementation of equal s must be able to handle an argument of any type, to avoid failing casts. Therefore,
the implementation should inspect the type of its argument to see if the argument can be safely cast to the class
in which the equal s method is declared.

Recommendation

Usually, an implementation of equal s should check the type of its argument using i nst anceof , following the
general pattern below.

1 class A {

2 /1

3 public final bool ean equal s(Object obj) {
4 if (!(obj instanceof A)) {
5 return fal se;

6 }

7 A a = (Aobj;

8 /1 ...further checks...

9 }

10 /1

11}

Using i nst anceof in this way has the added benefit that it includes a guard against null pointer exceptions: if obj
is nul I, the check fails and f al se is returned. Therefore, after the check, it is guaranteed that obj is not nul I, and
its fields can be safely accessed.

Whenever you use i nst anceof to check the type of the argument, you should declare the equal s method fi nal , SO
that subclasses are unable to cause a violation of the symmetry requirement of the equal s contract by further
overriding equal s.

If you want subclasses to redefine the notion of equality by overriding equal s, use get d ass instead of i nst anceof
to check the type of the argument. However, note that the use of get d ass prevents any equality relationship
between instances of a class and its subclasses, even when no additional state is added in a subclass.

References

® J. Bloch, Effective Java (second edition), Item 8. Addison-Wesley, 2008.
® Java API Documentation: Object.equals().
® The Java Language Specification: Type Comparison Operator instanceof.

JPL Java Coding Standard v1.0 March 31, 2014. Page 71

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.20.2

Critical rules

Exceptions

® Avoid catching 'Throwable' or 'Exception’
® Do not dereference a variable that is 'null’
® Ensure that 'finally' blocks complete normally

JPL Java Coding Standard v1.0 March 31, 2014. Page 72

Critical rules

Avoid catching 'Throwable' or 'Exception’

...

Category: Critical > Exceptions

Description: Catching "Throwable' or 'Exception’ is dangerous because these can include 'Error' or
'RuntimeException'.

Catching Thr owabl e Or Except i on is dangerous because these can include an Error such as cut Of MenoryError OF @
Runt i meExcept i on such as Arrayl ndexQut Of BoundsExcept i on. These should normally be propagated to the
outermost level because they generally indicate a program state from which normal operation cannot be
recovered.

Recommendation

It is usually best to ensure that exceptions that are caught in a cat ch clause are as specific as possible to avoid
inadvertently suppressing more serious problems.

Example

In the following example, the cat ch clause in the first t ry block catches Thr owabl e. However, when performing
read operations on a Fi | el nput St reamwithin a t ry block, the corresponding cat ch clause should normally catch
| CExcept i on instead. This is shown in the second, modified t ry block.

FilelnputStreamfis = ...

try {
fis.read();

} catch (Throwable e) { // BAD: The exception is too general.
/1 Handle this exception
}

FilelnputStreamfis = ...

9 try {
10 fis.read();

11 } catch (1 Oexception e) { // GOOD: The exception is specific.
12 /1 Handl e this exception
13 }

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 44. Addison-Wesley,
2005.
® Java Platform, Standard Edition 6, API Specification: Throwable, Error, Exception, RuntimeException.

JPL Java Coding Standard v1.0 March 31, 2014. Page 73

http://docs.oracle.com/javase/6/docs/api/java/lang/Throwable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Error.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/6/docs/api/java/lang/RuntimeException.html

Critical rules

Do not dereference a variable that is 'null’

...

Category: Critical > Exceptions

Description: Dereferencing a variable whose value is 'null' causes a 'NullPointerException'.

'
...

If a variable is dereferenced, and the variable has a nul I value on all possible execution paths leading to the
dereferencing, the dereferencing is guaranteed to result in a Nul | Poi nt er Except i on.

Recommendation
Ensure that the variable does not have a nul | value when it is dereferenced.
References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 74

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Ensure that 'finally' blocks complete normally

...

Category: Critical > Exceptions

Description: A 'finally’ block that runs because an exception has been thrown, and that does not complete
normally, causes the exception to disappear silently. :

A final Iy block that does not complete normally suppresses any exceptions that may have been thrown in the
corresponding t ry block. This can happen if the fi nal I y block contains any return or t hr ow Statements, or if it
contains any break Or cont i nue statements whose jump target lies outside of the fi nal I y block.

Recommendation

To avoid suppressing exceptions that are thrown in a try block, design the code so that the corresponding
final |y block always completes normally. Remove any of the following statements that may cause it to terminate
abnormally:

return
t hr ow
br eak

conti nue

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 36. Addison-Wesley,
2005.

® The Java Language Specification: Execution of try-finally and try-catch-finally.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 75

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.20.2
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Expressions

® Avoid accidentally assigning to a local variable in a 'return’ statement
® Avoid accidentally using a bitwise logical operator instead of a conditional operator

JPL Java Coding Standard v1.0 March 31, 2014. Page 76

Critical rules

Avoid accidentally assigning to alocal variable in a 'return’' statement

...

Category: Critical > Expressions

Description: Assigning to a local variable in a 'return’ statement has no effect.

...

An assignment is an expression. The value of an assignment expression is the value assigned to the variable.
This can be useful, for example, when initializing two or more variables at once (for example, a = b = 0;).
However, assigning to a local variable in the expression of a return statement is redundant because that value
can never be read.

Recommendation

Remove the redundant assignment from the ret ur n statement, leaving just the right-hand side of the assignment.

Example

In the following example, consider the second assignment to ret . The variable goes out of scope when the
method returns, and the value assigned to it is never read. Therefore, the assignment is redundant. Instead, the
last line of the method can be changed to return Math. max(ret, c);

1 public class Uilities

2 {

3 public static int max(int a, int b, int c) {

4 int ret = Math. max(a, b)

5 return ret = Math.nmax(ret, c); // Redundant assignnent
6

7

}

References

® Java Language Specification: 14.17 The return Statement, 15.26 Assignment Operators.

JPL Java Coding Standard v1.0 March 31, 2014. Page 77

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.17
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26

Critical rules

Avoid accidentally using a bitwise logical operator instead of a conditional operator

...

Category: Critical > Expressions

Description: Using a bitwise logical operator on a Boolean where a conditional-and or conditional-or
operator is intended is likely to give the wrong result and may cause an exception.

Using a bitwise logical operator (& or |) on a Boolean where a conditional-and or conditional-or operator (&& or | |)
is intended is likely to give the wrong result and may cause an exception. This is especially true if the left-hand
operand is a guard for the right-hand operand.

Typically, as in the example below, this kind of defect is introduced by simply mistyping the intended logical
operator rather than any conceptual mistake by the programmer.

Recommendation

If the right-hand side of an expression is only intended to be evaluated if the left-hand side evaluates to tr ue, use
a conditional-and.

Similarly, if the right-hand side of an expression is only intended to be evaluated if the left-hand side evaluates to
fal se, use a conditional-or.

Example

In the following example, the hasFor ename method is implemented correctly. For a forename to be valid it must be
a non-null string with a non-zero length. The method has two expressions (f orenane != nul | and

forenane. | ength() > 0) to check these two properties. The second check is executed only if the first succeeds,
because they are combined using a conditional-and operator (&&).

In contrast, although hassur nane looks almost the same, it contains a defect. Again there are two tests (sur nanme
= null and surnane. | ength() > 0), but they are linked by a bitwise logical operator (&). Both sides of a bitwise
logical operator are always evaluated, so if surnane iS nul | the hasSur name method throws a Nul | Poi nt er Except i on
. To fix the defect, change &to &&.

1 public class Person

2 {

3 private String forenang;

4 private String surnane;

5

6 publ i c bool ean hasForename() {

7 return forenane != null && forenane.length() > 0; // GOOD: Conditional -and operator
8 }

9

10 publ i c bool ean hasSurname() {

11 return surnane != null & surnane.length() > 0; // BAD: Bitw se AND operator
12 }

13

14 /1

15 }

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 42. Addison-Wesley,
2005.

® Java Language Specification: 15.22.2 Boolean Logical Operators &, #, and |, 15.23 Conditional-And
Operator &&, 15.24 Conditional-Or Operator ||.

JPL Java Coding Standard v1.0 March 31, 2014. Page 78

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.23
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.23
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.24

Critical rules

Extensibility

® Avoid calling 'getClass().getResource()'
® Avoid forcible termination of the JVM

JPL Java Coding Standard v1.0 March 31, 2014. Page 79

Critical rules

Avoid calling 'getClass().getResource()’

...

Category: Critical > Extensibility

Description: Calling 'this.getClass().getResource()' may yield unexpected results if called from a subclass
in another package.

Using the d ass. get Resour ce method is a common way of including some non-code resources with an application.

There are problems when this is called using x. get d ass() . get Resour ce() , for some variable x. This is not a safe
way to retrieve a resource. The method get d ass returns the run-time class of x (that is, its actual, "most derived"
class, rather than its declared type), which causes two potential problems:

® [f the run-time type of the receiving object is a subclass of the declared type and is in a different package,
the resource path may be interpreted differently. According to its contract, d ass. get Resour ce qualifies
non-absolute paths with the current package name, thus potentially returning a different resource or failing
to find the requested resource.

® d ass. get Resour ce delegates finding the resource to the class loader that loaded the class. At run time,
there is no guarantee that all subclasses of a particular type are loaded by the same class loader, resulting
in resource lookup failures that are difficult to diagnose.

Recommendation

Rather than using the get d ass method, which relies on dynamic dispatch and run-time types, use cl ass literals
instead. For example, instead of calling get d ass() . get Resour ce() on an object of type Foo, call

Foo. cl ass. get Resour ce() . Class literals always refer to the declared type they are used on, removing the
dependency on run-time types.

Example

In the following example, the calls to get Post al Codes return different results, depending on which class the call is
made on: the class Address is in the package framewor k and the class UKaddr ess is in the package cli ent.

1 package framework;

2 class Address {

3 public URL get Postal Codes() {

// AVO D: The call is nade on the run-tinme type of "this'.
return this.getC ass().getResource("postal -codes.csv");

~N o o b
—

}
8

9 package client;
10 cl ass UKAddress extends Address {

11 public void convert() {

12 /1 Looks up "framework/ postal - codes. csv"
13 new Address() . get Post al Codes();

14 /1 Looks up "client/postal-codes. csv"

15 new UKAddr ess(). get Post al Codes();

16 }

17 '}

In the following corrected example, the implementation of get Post al Codes is changed so that it always calls
get Resour ce on the same class.

1 package framework;

2 class Address {

3 public URL get Postal Codes() {

4 /] GOOD: The call is always nade on an object of the sane type.

JPL Java Coding Standard v1.0 March 31, 2014. Page 80

Critical rules

return Address. cl ass. get Resour ce("post al -codes. csv");

}

0 ~N O O
—~

9 package client;
10 cl ass UKAddress extends Address {

11 public void convert() {

12 /'l Looks up "franmework/postal -codes. csv"
13 new Address() . get Post al Codes();

14 /'l Looks up "franmework/ postal -codes. csv"
15 new UKAddr ess(). get Post al Codes();

16 }

17 '}

References

® Java Platform, Standard Edition 7, API Specification: class.getResource().

JPL Java Coding Standard v1.0 March 31, 2014. Page 81

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#getResource(java.lang.String)

Critical rules

Avoid forcible termination of the JVM

...

Category: Critical > Extensibility

Description: Calling 'System.exit', '‘Runtime.halt’, or ‘Runtime.exit' may make code harder to reuse and
prevent important cleanup steps from running.

Calling one of the methods System exi t, Runti ne. hal t, and Runti ne. exi t immediately terminates the Java Virtual
Machine (JVM), effectively killing all threads without giving any of them a chance to perform cleanup actions or
recover. As such, it is a dangerous thing to do: firstly, it can terminate the entire program inadvertently, and
secondly, it can prevent important resources from being released or program state from being written to disk
consistently.

It is sometimes considered acceptable to call system exit from a program's mai n method in order to indicate the
overall exit status of the program. Such calls are an exception to this rule.

Recommendation

It is usually preferable to use a different mechanism for reporting failure conditions. Consider returning a special
value (perhaps nul I') that users of the current method check for and recover from appropriately. Alternatively,
throw a suitable exception, which unwinds the stack and allows properly written code to clean up after itself, while
leaving other threads undisturbed.

Example

In the following example, problem 1 shows that Fi | eCut put. wri t e tries to write some data to disk and terminates
the JVM if this fails. This leaves the partially-written file on disk without any cleanup code running. It would be
better to either return f al se to indicate the failure, or let the | OExcept i on propagate upwards and be handled by a
method that knows how to recover.

Problem 2 is more subtle. In this example, there is just one entry point to the program (the mai n method), which
constructs an Acti on and performs it. Acti on. run calls Syst em exi t to indicate successful completion. Consider,
however, how this code might be integrated in an application server that constructs Acti on instances and calls run
on them without going through mai n. The fact that r un terminates the JVM instead of returning its exit code as an
integer makes that use-case impossible.

1 // Problem1: Mss out cleanup code
2 class FileCQutput {

3 bool ean write(String[] s) {

4 try {

5 output.wite(s.getBytes());
6 } catch (I OException e) {

7 Systemexit(1);

8 }

9 return true;

10 }

11}

12

13 // Problem 2: Make code reuse difficult
14 class Action {

15 public void run() {

16 /1

17 /1 Performtasks ...

18 /1

19 System exit(0);

20 }

21 public static void main(String[] args) {

JPL Java Coding Standard v1.0 March 31, 2014. Page 82

Critical rules

22 new Action(args).run();
23 }

24}

References

® J. Bloch, Effective Java (second edition), p. 232. Addison-Wesley, 2008.
® Java Platform, Standard Edition 7, API Specification: System.exit(int), Runtime.halt(int), Runtime.exit(int).

JPL Java Coding Standard v1.0 March 31, 2014. Page 83

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#exit(int)
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#halt(int)
http://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html#exit(int)

Critical rules

Incomplete Code

® Avoid empty blocks or statements
® Avoid empty statements
® Ensure that a 'switch' includes cases for all 'enum' constants

JPL Java Coding Standard v1.0 March 31, 2014. Page 84

Critical rules

Avoid empty blocks or statements

...

Category: Critical > Incomplete Code

Description: An undocumented empty block or statement hinders readability. It may also indicate
incomplete code.

An unexplained empty block or statement makes the code less readable. It might also indicate missing code, a
misplaced semicolon, or a misplaced brace. For these reasons, it should be avoided.

Recommendation
If a block is empty because some code is missing, add the code.

If ani f statement has an empty t hen branch and a non-empty el se branch, it may be possible to negate the
condition and move the statements of the el se branch into the t hen branch.

If a block is deliberately empty, add a comment to explain why.

Example

In the following example, the whi | e loop has intentionally been left empty. The purpose of the loop is to scan a
st ri ng for the first occurrence of the character ' = . A programmer reading the code might not understand the
reason for the empty loop body, and think that something is missing, or perhaps even that the loop is useless.
Therefore it is a good practice to add a comment to an empty block explaining why it is empty.

1 public class Parser

2

3 public void parse(String input) {
4 int pos = 0;

5 I

6 /1 AVO D: Enpty bl ock

7 while (input.charAt(pos++) !'="=") { }
8 ...

9 }

10 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 14.2 Blocks, 14.6 The Empty Statement, 14.9 The if Statement, 14.12 The
while Statement, 14.13 The do Statement, 14.14 The for Statement.

JPL Java Coding Standard v1.0 March 31, 2014. Page 85

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.9
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.12
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.12
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.13
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.14

Critical rules

Avoid empty statements

...

Category: Critical > Incomplete Code

Description: An empty statement hinders readability.

...

An empty statement is a single semicolon ; that does not terminate another statement. Such a statement hinders
readability and has no effect on its own.

Recommendation

Avoid empty statements. If a loop is intended to have an empty body, it is better to mark that fact explicitly by
using a pair of braces {} containing an explanatory comment for the body, rather than a single semicolon.

Example

In the following example, there is an empty statement on line 3, where an additional semicolon is used. On line 6,
the for statement has an empty body because the condition is immediately followed by a semicolon. In this case,
it is better to include a pair of braces {} containing an explanatory comment for the body instead.

$body

public class Cart {
/1 AVO D: Enpty statenent
List<ltem> itenms = new Arraylist<Cart>();;
public void appl yDi scount (float discount) {
/1 AVO D. Enpty statenent as |oop body
for (int i =0; i <itens.size(); itens.get(i++).applyDi scount(discount));

O~NOOUIDWN -

fu——

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 86

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Ensure that a 'switch' includes cases for all 'enum' constants

...

Category: Critical > Incomplete Code

Description: A 'switch' statement that is based on an 'enum’ type and does not have cases for all the
‘enum’ constants is usually a coding mistake.

A swi t ch statement that is based on a variable with an enumtype should either have a default case or handle all
possible constants of that enumtype. Handling all but one or two enumconstants is usually a coding mistake.

Recommendation

If there are only a handful of missing cases, add them to the end of the swi t ch statement. If there are many cases
that do not need to be handled individually, add a default case to handle them.

If there are some enumconstants that should never occur in this particular part of the code, then program
defensively by adding cases for those constants and explicitly throwing an exception (rather than just having no
cases for those constants).

Example

In the following example, the case for 'YES' is missing. Therefore, if answer is 'YES', an exception is thrown at run
time. To fix this, a case for 'YES' should be added.

1 enum Answer { YES, NO, MAYBE }

2

3 class Optimst

4 {

5 Answer interpet(Answer answer) {
6 switch (answer) {

7 case MAYBE:

8 return Answer. YES;

9 case NO

10 return Answer. MAYBE;
11 /1 Mssing case for 'YES
12 }

13 throw new Runti neException("uncaught case: " + answer);
14 }

15 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 8.9 Enums, 14.11 The switch Statement.

JPL Java Coding Standard v1.0 March 31, 2014. Page 87

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.11

Critical rules

Java objects

® Cloning
® Garbage collection
® Serialization

JPL Java Coding Standard v1.0 March 31, 2014. Page 88

Critical rules

Cloning

® Ensure that a subclass 'clone' method calls 'super.clone'

JPL Java Coding Standard v1.0 March 31, 2014. Page 89

Critical rules

Ensure that a subclass ‘clone’ method calls 'super.clone'

...

Category: Critical > Java objects > Cloning

Description: A 'clone' method that is overridden in a subclass, and that does not itself call 'super.clone’,
causes calls to the subclass's 'clone’ method to return an object of the wrong type.

A cl one method that is overridden in a subclass should call super. cl one. Not doing so causes the subclass cl one
to return an object of the wrong type, which violates the contract for d oneabil e.

The Java API documentation states that, for an object x, the general intent of the cl one method is for it to satisfy
the following three properties:

® x.clone() != x (the cloned object is a different object instance)
® x.clone().getC ass() == x.getd ass() (the cloned object is the same type as the source object)
® x.clone().equal s(x) (the cloned object has the same 'contents' as the source object)

For the cloned object to be of the same type as the source object, non-final classes must call super . cl one and
that call must eventually reach oj ect . cl one, which creates an instance of the right type. If it were to create a new
object using a constructor, a subclass that does not implement the cl one method returns an object of the wrong
type. In addition, all of the class's supertypes that also override cl one must call super . cl one. Otherwise, it never
reaches j ect . cl one and creates an object of the incorrect type.

However, as j ect . cl one only does a shallow copy of the fields of an object, any d oneabl e objects that have a
"deep structure" (for example, objects that use an array or Col | ecti on) must take the clone that results from the
call to super. cl one and assign explicitly created copies of the structure to the clone's fields. This means that the
cloned instance does not share its internal state with the source object. If it did share its internal state, any
changes made in the cloned object would also affect the internal state of the source object, probably causing
unintended behavior.

One added complication is that cl one cannot modify values in final fields, which would be already set by the call
to super. cl one. Some fields must be made non-final to correctly implement the cl one method.

Recommendation

Every clone method should always use super . cl one to construct the cloned object. This ensures that the cloned
object is ultimately constructed by oj ect . cl one, which uses reflection to ensure that an object of the correct
runtime type is created.

Example

In the following example, the attempt to clone W ongEnpl oyee fails because super. cl one is implemented incorrectly
in its superclass W ongPer son.

1 class WongPerson inplenents C oneable {

2 private String nang;

3 public WongPerson(String nane) { this.nane = nane; }
4 /1 BAD: 'clone' does not call 'super.clone'.

5 public WongPerson clone() {

6 return new WongPerson(this.nane);

7 }

8 1}

9

10 cl ass WongEnpl oyee extends WongPerson {

11 public WongEnpl oyee(String nanme) {

12 super (nane) ;

13 }

14 /1 ALMOST RICHT: 'clone' correctly calls 'super.clone',

JPL Java Coding Standard v1.0 March 31, 2014. Page 90

Critical rules

15 /1 but 'super.clone' is inplenented incorrectly.

16 publ i c WongEnpl oyee clone() {

17 return (WongEnpl oyee) super. cl one();

18 }

19 }

20

21 public class M ssingCall ToSuperC one {

22 public static void main(String[] args) {

23 W ongEnpl oyee e = new W ongEnpl oyee("John Doe");
24 W ongEnpl oyee eclone = e.clone(); // Causes a Cl assCast Exception
25 }

26}

However, in the following modified example, the attempt to clone Enpl oyee succeeds because super. cl one is
implemented correctly in its superclass Per son.

1 class Person inplenents O oneable {

2 private String nane;

3 public Person(String nane) { this.name = nane; }
4 /] GOCD: 'clone' correctly calls 'super.clone'

5 public Person clone() {

6 try {

7 return (Person)super.clone();

8 } catch (C oneNot SupportedException e) {

9 throw new AssertionError("Shoul d never happen");
10 }

11 }

12}

13

14 cl ass Enpl oyee extends Person {

15 publ i c Enpl oyee(String nanme) {

16 super (nane) ;

17 }

18 /] GOOD: 'clone' correctly calls 'super.clone'
19 publ i c Enpl oyee clone() {

20 return (Enpl oyee)super. cl one();

21 }

22}

23

24 public class M ssingCall ToSuperd one {

25 public static void main(String[] args) {

26 Enpl oyee e2 = new Enpl oyee("Jane Doe");

27 Enpl oyee e2clone = e2.clone(); // 'clone' correctly returns an object of type 'Enployee'
28 }

29 }

References

* J. Bloch, Effective Java (second edition), Item 11. Addison-Wesley, 2008.
® Java 6 API Specification: Object.clone().

JPL Java Coding Standard v1.0 March 31, 2014. Page 91

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Critical rules

Garbage collection

® Do not call 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit'

JPL Java Coding Standard v1.0 March 31, 2014. Page 92

Critical rules

Do not call 'System.runFinalizersOnExit' or ‘Runtime.runFinalizersOnExit'

Category: Critical > Java objects > Garbage collection

Description: Calling 'System.runFinalizersOnEXxit' or 'Runtime.runFinalizersOnExit' may cause finalizers to
be run on live objects, leading to erratic behavior or deadlock. :

Avoid calling Syst em runFi nal i zer sOnExi t OFr Runti me. runFi nal i zer sOnExi t , which are considered to be dangerous
methods.

The Java Development Kit documentation for Syst em r unFi nal i zer sOnExi t states:

This method is inherently unsafe. It may result in finalizers being called on live objects while
other threads are concurrently manipulating those objects, resulting in erratic behavior or
deadlock.

Object finalizers are normally only called when the object is about to be collected by the garbage collector. Using
runFi nal i zer sOnExi t sets a Java Virtual Machine-wide flag that executes finalizers on all objects with a final i ze
method before the runtime exits. This would require all objects with finalizers to defend against the possibility of
finalize being called when the object is still in use, which is not practical for most applications.

Recommendation

Ensure that the code does not rely on the execution of finalizers. If the code is dependent on the garbage
collection behavior of the Java Virtual Machine, there is no guarantee that finalizers will be executed in a timely
manner, or at all. This may become a problem if finalizers are used to dispose of limited system resources, such
as file handles.

Instead of finalizers, use explicit di spose methods in fi nal I y blocks, to make sure that an object's resources are
released.

Example

The following example shows a program that calls r unFi nal i zer sonExi t , which is not recommended.

1 void main() {

2 /1

3 /1 BAD: Call to 'runFinalizersOnExit' forces execution of all finalizers on term nation of
4 /1 the runtime, which can cause live objects to transition to an invalid state.

5 /1 Avoid using this method (and finalizers in general).

6 System runFinal i zersOnExit (true);

7 /1

8 }

The following example shows the recommended approach: a program that calls a di spose method inafinally
block.

1 // Instead of using finalizers, define explicit term nation methods
2 /] and call themin "finally' blocks.
3 class Local Cache {

4 private Collection<File> cacheFiles = ...;
5

6 /'l Explicit method to close all cacheFiles
7 public void dispose() {

8 for (File cacheFile : cacheFiles) {

9 di sposeCacheFi |l e(cacheFil e);

10 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 93

11 }

12}

13

14 void nmain() {

15 Local Cache cache = new Local Cache();

16 try {

17 /'l Use the cache

18 } finally {

19 /1 Call the termination nmethod in a 'finally' block, to ensure that
20 /'l the cache's resources are freed.
21 cache. di spose();

22 }

23 }

References

® J. Bloch, Effective Java (second edition), Iltem 7. Addison-Wesley, 2008.
® Java 6 APl Documentation: System.runFinalizersOnExit(), Object.finalize().
® Java SE Documentation: Java Thread Primitive Deprecation.

JPL Java Coding Standard v1.0 March 31, 2014.

Critical rules

Page 94

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#runFinalizersOnExit%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#finalize%28%29
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

Critical rules

Serialization

Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type

Ensure that a class that implements '‘Comparator' and is used to construct a sorted collection is serializable
Ensure that a non-serializable, immediate superclass of a serializable class declares a default constructor
Ensure that a non-static, serializable nested class is enclosed in a serializable class

JPL Java Coding Standard v1.0 March 31, 2014. Page 95

Critical rules

Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type

Category: Critical > Java objects > Serialization

Description: A 'serialVersionUID' field that is declared in a serializable class but is of the wrong type
cannot be used by the serialization framework.

A serializable class that uses the seri al Ver si onul D field to act as an object version number must declare the field
to be final, static, and of type I ong for it to be used by the Java serialization framework.

Recommendation
Make sure that the seri al Versi onul Dfield in a serialized class is final, static, and of type I ong.
Example

In the following example, W ongNot e defines seri al Ver si onUl D using the wrong type, so that it is not used by the
Java serialization framework. However, Not e defines it correctly so that it is used by the framework.

1 class WongNote inplenents Serializable {

2 /1 BAD: serial VersionU D nust be static, final, and 'l ong'
3 private static final int serialVersionUD = 1;

4

5 /...

6 }

7

8 class Note inplenments Serializable {

9 /] GOOD: serial VersionUDis of the correct type
10 private static final |ong serial VersionU D = 1L;
11 }

References

® Java API Documentation: Serializable.
® JavaWorld: Ensure proper version control for serialized objects.

JPL Java Coding Standard v1.0 March 31, 2014. Page 96

http://docs.oracle.com/javase/1.5.0/docs/api/java/io/Serializable.html
http://www.javaworld.com/javaworld/jw-02-2006/jw-0227-control.html?page=1

Critical rules

Ensure that a class that implements 'Comparator' and is used to construct a sorted collection is
serializable

Category: Critical > Java objects > Serialization

Description: A comparator that is passed to an ordered collection (for example, a treemap) must be
serializable, otherwise the collection fails to serialize at run-time.

A class that implements j ava. uti | . Conpar at or and is used to construct a sorted collection needs to be
serializable. An ordered collection (such as a j ava. util. TreeMap) that is constructed using a comparator
serializes successfully only if the comparator is serializable.

The col I ecti ons in the Java Standard Library that require a comparator (TreeSet, TreeMap, PriorityQueue) all call
Obj ect Qut put St ream def aul t Wi t eQbj ect , which tries to serialize every non-static, non-transient field in the class.
As the comparator is stored in a field in these collections, the attempt to serialize a non-serializable comparator
throws aj ava. i 0. Not Seri al i zabl eExcept i on.

Recommendation

Comparators should be serializable if they are used in sorted collections that may be serialized. In most cases,
simply changing the comparator so it also implements Seri al i zabl e is enough. Comparators that have internal
state may require additional changes (for example, custom writ eObj ect and readObj ect methods). In these cases,
it is best to follow general best practices for serializable objects (see references below).

Example

In the following example, w ongConpar at or is not serializable because it does not implement Seri al i zabl e.
However, stri ngConpar at or is serializable because it does implement Seri al i zabl e.

$body

1 // BAD: This is not serializable, and throws a 'java.io.NotSerializabl eException'
2 [l when used in a serializable sorted collection.

3 class WongConparator inplenents Conparator<String> {

4 public int conpare(String ol, String 02) {

5 return ol. conpareTo(02);

6 }

7}

8

9 // GOOD: This is serializable, and can be used in collections that are neant to be serialized.
10 class StringConparator inplenents Conparator<String>, Serializable {

11 private static final |ong serial VersionU D = -5972458403679726498L;

12

13 public int conpare(String arg0, String argl) {

14 return argO0. conpareTo(argl);

15

16 }

References

® Java API Documentation: Comparator, ObjectOutputStream, Serializable.

JPL Java Coding Standard v1.0 March 31, 2014. Page 97

http://docs.oracle.com/javase/6/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

Critical rules

Ensure that a non-serializable, immediate superclass of a serializable class declares a default
constructor

Category: Critical > Java objects > Serialization

Description: A non-serializable, immediate superclass of a serializable class that does not itself declare
an accessible, no-argument constructor causes deserialization to fail.

A serializable class that is a subclass of a non-serializable class cannot be deserialized if its superclass does not
declare a no-argument constructor. The Java serialization framework uses the no-argument constructor when it
initializes the object instance that is created during deserialization. Deserialization fails with an

I nval i dd assExcepti on if its superclass does not declare a no-argument constructor.

The Java Development Kit APl documentation states:

To allow subtypes of non-serializable classes to be serialized, the subtype may assume
responsibility for saving and restoring the state of the supertype's public, protected, and (if
accessible) package fields. The subtype may assume this responsibility only if the class it
extends has an accessible no-arg constructor to initialize the class's state. It is an error to
declare a class seri al i zabl e if this is not the case. The error will be detected at runtime.

Recommendation

Make sure that every non-serializable class that is extended by a serializable class has a no-argument
constructor.

Example

In the following example, the class w ongSubl t emcannot be deserialized because its superclass w ongl t emdoes
not declare a no-argument constructor. However, the class subl t emcan be serialized because it declares a
no-argument constructor.

1 class Wongltem {

2 private String nang;

3

4 /1 BAD: This class does not have a no-argunent constructor, and throws an
5 /1 "lnvalidC assException' at runtine.

6

7 public Wongltem(String nane) {

8 this. name = naneg;

9 }

10 }

11

12 class WongSubltem extends Wonglteminplenents Serializable {
13 public WongSublten() {

14 super (null);

15 }

16

17 public WongSublten(String nane) {

18 super (nane) ;

19 }

20 }

21

22 class Item{

23 private String nang;

24

25 // GOOD: This class declares a no-argunment constructor, which allows serializable

JPL Java Coding Standard v1.0 March 31, 2014. Page 98

Critical rules

26 /] subclasses to be deserialized w thout error.
27 public Item() {}

28

29 public Item(String nanme) {

30 this. name = naneg;

31 }

32}

33

34 class Subltemextends Iteminplenments Serializable {
35 public Sublten() {

36 super (nul l);

37 }

38

39 public Sublten(String nanme) {

40 super (nane) ;

41 }

42}

References

® Java API Documentation: Serializable.
® J. Bloch, Effective Java (second edition), Item 74. Addison-Wesley, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 99

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html

Critical rules

Ensure that a non-static, serializable nested class is enclosed in a serializable class

Category: Critical > Java objects > Serialization

Description: A class that is serializable with an enclosing class that is not serializable causes serialization
to fail.

Non-static nested classes that implement Seri al i zabl e must be defined in an enclosing class that is also
serializable. Non-static nested classes retain an implicit reference to an instance of their enclosing class. If the
enclosing class is not serializable, the Java serialization mechanism fails with a

java.io. Not Seri al i zabl eExcepti on.

Recommendation
To avoid causing a Not Seri al i zabl eExcept i on, do one of the following:

® Declare the nested class as stati ¢ : If the nested class does not use any of the non-static fields or
methods of the enclosing class, it is best to declare it st ati c. This removes the implicit reference to an
instance of the enclosing class, and has the additional effect of breaking an unnecessary dependency
between the two classes. A similar solution is to turn the nested class into a separate top-level class.

® Make the enclosing class implement Seri al i zabl e : However, this is not recommended because the
implementation of inner classes may be compiler-specific, and serializing an inner class can result in
non-portability across compilers. The Java Serialization Specification states:

Serialization of inner classes (i.e., nested classes that are not static member classes),
including local and anonymous classes, is strongly discouraged for several reasons.
Because inner classes declared in non-static contexts contain implicit non-transient
references to enclosing class instances, serializing such an inner class instance will result
in serialization of its associated outer class instance as well. Synthetic fields generated by
javac (or other Java(TM) compilers) to implement inner classes are implementation
dependent and may vary between compilers; differences in such fields can disrupt
compatibility as well as result in conflicting default serialVersionUID values. The names
assigned to local and anonymous inner classes are also implementation dependent and
may differ between compilers.

Example

In the following example, the class W ongSessi on cannot be serialized without causing a Not Seri al i zabl eExcept i on
, because it is enclosed by a non-serializable class. However, the class Sessi on can be serialized because it is
declared as stati c.

cl ass NonSeri al i zabl eServer {

1
2
3 /1 BAD: The followi ng class is serializable, but the enclosing class
4 /1 'NonSerializableServer' is not. Serializing an instance of 'WongSession'
5 /] causes a 'java.io.NotSerializabl eException'.
6 cl ass WongSession i nplenents Serializable {
7 private static final |ong serial VersionU D = 8970783971992397218L;
8 private int id;

9 private String user;

10

11 WongSession(int id, String user) { /*...*/ }

12 }

13

JPL Java Coding Standard v1.0 March 31, 2014. Page 100

Critical rules

14 public WongSessi on get NewSessi on(String user) {
15 return new WongSession(newid(), user);

16 }

17 '}

18

19 class Server {

20

21 /] GOOD: The follow ng class can be correctly serialized because it is static.
22 static class Session inplenents Serializable {
23 private static final |ong serial VersionU D = 1065454318648105638L;
24 private int id;

25 private String user;

26

27 Session(int id, String user) { /*...*/ }

28 }

29

30 public Session get NewSession(String user) {

31 return new Session(new d(), user);

32 }

33 }

References

® Java 6 Object Serialization Specification: 1.10 The Serializable Interface, 2.1 The ObjectOutputStream
Class.

JPL Java Coding Standard v1.0 March 31, 2014. Page 101

http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#4539
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/output.html#933
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/output.html#933

Critical rules

Logic Errors

Annotate annotations with a 'RUNTIME' retention policy
Avoid array downcasts

Avoid type mismatch when calling 'Collection.contains'
Avoid type mismatch when calling 'Collection.remove’
Do not call a non-final method from a constructor

Do not perform self-assignment

Include braces for control structures

JPL Java Coding Standard v1.0 March 31, 2014. Page 102

Critical rules

Annotate annotations with a 'RUNTIME' retention policy

...

Category: Critical > Logic Errors

Description: If an annotation has not been annotated with a 'RUNTIME' retention policy, checking for its
presence at runtime is not possible.

To be able to use the i sAnnot ati onPresent method on an Annot at edEl enent at runtime, an annotation must be
explicitly annotated with a RUNTI ME retention policy. Otherwise, the annotation is not retained at runtime and
cannot be observed using reflection.

Recommendation

Explicitly annotate annotations with a RUNTI ME retention policy if you want to observe their presence using
Annot at edEl enent . i sAnnot ati onPresent at runtime.

Example

In the following example, the call to i sAnnot ati onPresent returns f al se because the annotation cannot be
observed using reflection.

public class AnnotationPresent Check {
public static @nterface UntrustedData { }

1
2
3
4 @Jnt rust edDat a

5 public static String getUserData() {

6 Scanner scanner = new Scanner (Systemin);
7 return scanner. nextLine();

8
9

}
10 public static void main(String[] args) throws NoSuchMet hodExcepti on, SecurityException {
11 String data = getUserData();
12 Met hod m = Annot ati onPresent Check. cl ass. get Met hod(" get User Dat a") ;
13 i f(misAnnotationPresent(UntrustedbData.class)) { // Returns 'false'
14 Systemout.println("Not trusting data fromuser.");
15 }
16 }
17 '}

To correct this, the annotation is annotated with a RUNTI M retention policy.

1 public class AnnotationPresent CheckFix {

2 @Ret enti on(RetentionPolicy. RUNTIME) // Annotate the annotation

3 public static @nterface UntrustedData { }

4

5 @nt rust edDat a

6 public static String getUserData() {

7 Scanner scanner = new Scanner (Systemin);

8 return scanner. nextLine();

9 }

10

11 public static void main(String[] args) throws NoSuchMet hodExcepti on, SecurityException {
12 String data = getUserData();

13 Met hod m = Annot ati onPr esent CheckFi x. cl ass. get Met hod(" get User Data") ;
14 i f(misAnnotationPresent(UntrustedbData.class)) { // Returns 'true'
15 Systemout.println("Not trusting data fromuser.");

16 }

17 }

18 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 103

Critical rules

References

® Java API Documentation: Annotation Type Retention, RetentionPolicy. RUNTIME,
AnnotatedElement.isAnnotationPresent().

JPL Java Coding Standard v1.0 March 31, 2014. Page 104

http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/RetentionPolicy.html#RUNTIME
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/AnnotatedElement.html#isAnnotationPresent%28java.lang.Class%29

Critical rules

Avoid array downcasts

...

Category: Critical > Logic Errors

Description: Trying to cast an array of a particular type as an array of a subtype causes a
'‘ClassCastException' at runtime.

Some downcasts on arrays will fail at runtime. An object a with dynamic type Al] cannot be cast to B[], where B is
a subtype of A, even if all the elements of a can be cast to B.

Recommendation

Ensure that the array creation expression constructs an array object of the right type.

Example

The following example shows an assignment that throws a d assCast Except i on at runtime.

1 String[] strs = (String[])new Ooject[]{ "hello", "world" };
To avoid the exception, a stri ng array should be created instead.
1 String[] strs = new String[]{ "hello", "world" };
References

® The Java Language Specification: Checked Casts at Run Time, Reference Type Casting, Subtyping
among Array Types.

JPL Java Coding Standard v1.0 March 31, 2014. Page 105

http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.5.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.10.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.10.3

Critical rules

Avoid type mismatch when calling 'Collection.contains’

...

Category: Critical > Logic Errors

Description: Calling 'Collection.contains’ with an object of a different type than that of the collection is
unlikely to return 'true’.

The cont ai ns method of the col I ecti on interface has an argument of type j ect . Therefore, you can try to check
if an object of any type is a member of a collection, regardless of the collection's element type. However, although
you can call cont ai ns with an argument of a different type than that of the collection, it is unlikely that the
collection actually contains an object of this type.

Recommendation

Ensure that you use the correct argument with a call to cont ai ns.

Example

In the following example, although the argument to cont ai ns is an integer, the code does not result in a type error
because the argument does not have to match the type of the elements of 1i st . However, the argument is
unlikely to be found (and the body of the i f statement is therefore not executed), so it is probably a typographical
error: the argument should be enclosed in quotation marks.

1 void m(List<String> list) {

2 if (list.contains(123)) { // Call 'contains' with non-string argunent (w thout quotation marks)
3 Il

4 }

5}

Note that you must take particular care when working with collections over boxed types, as illustrated in the
following example. The first call to cont ai ns returns f al se because you cannot compare two boxed numeric
primitives of different types, in this case short (1) (in set) and I nteger (1) (the argument). The second call to
cont ai ns returns t rue because you can compare short (1) and Short(1).

1 HashSet <Short> set = new HashSet <Short>();

2 short s = 1;

3 set.add(s);

4 /] Follow ng statenment prints 'false', because the argunent is a literal int, which is auto-boxed

5 // to an Integer

6 Systemout.println(set.contains(l));

7 Il Follow ng statenent prints 'true', because the argunent is a literal int that is cast to a short,
8 /1 which is auto-boxed to a Short

9 Systemout.println(set.contains((short)1));

References

® Java APl Documentation: Collection.contains.

JPL Java Coding Standard v1.0 March 31, 2014. Page 106

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html#contains%28java.lang.Object%29

Critical rules

Avoid type mismatch when calling 'Collection.remove’

...

Category: Critical > Logic Errors

Description: Calling 'Collection.remove’ with an object of a different type than that of the collection is
unlikely to have any effect.

The renove method of the col | ecti on interface has an argument of type vj ect . Therefore, you can try to remove
an object of any type from a collection, regardless of the collection's element type. However, although you can
call rerove with an argument of a different type than that of the collection, it is unlikely that the collection actually
contains an object of this type.

Recommendation

Ensure that you use the correct argument with a call to r enove.

Example

In the following example, although the argument to cont ai ns is an integer, the code does not result in a type error
because the argument to renove does not have to match the type of the elements of 1i st . However, the argument
is unlikely to be found and removed (and the body of the i f statement is therefore not executed), so it is probably
a typographical error: the argument should be enclosed in quotation marks.

1 void m(List<String> list) {

2 if (list.remove(123)) { // Call 'renmove' w th non-string argument (w thout quotation narks)
3 Il

4 }

5}

Note that you must take particular care when working with collections over boxed types, as illustrated in the
following example. The first call to r enove fails because you cannot compare two boxed numeric primitives of
different types, in this case short (1) (in set) and I nteger (1) (the argument). Therefore, r enove cannot find the
item to remove. The second call to r enove succeeds because you can compare Short (1) and Short (1).
Therefore, remove can find the item to remove.

HashSet <Short > set = new HashSet <Short>();

short s = 1;

set.add(s);

/1 Following statement fails, because the argunment is a literal int, which is auto-boxed
/1 to an |Integer

set.remove(l);

Systemout.println(set); // Prints [1]

/1 Followi ng statenment succeeds, because the argunent is a literal int that is cast to a short,
9 // which is auto-boxed to a Short

10 set.renmove((short)1l);

11 Systemout.printin(set); // Prints []

O~NO O WNPR

References

® Java APl Documentation: Collection.remove.

JPL Java Coding Standard v1.0 March 31, 2014. Page 107

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html#remove%28java.lang.Object%29

Critical rules

Do not call a non-final method from a constructor

...

Category: Critical > Logic Errors

Description: If a constructor calls a method that is overridden in a subclass, the result can be
unpredictable.

If a constructor calls a method that is overridden in a subclass, it can cause the overriding method in the subclass
to be called before the subclass has been initialized. This can lead to unexpected results.

Recommendation

Do not call a non-final method from within a constructor if that method could be overridden in a subclass.

Example

In the following example, executing new Sub("test") results in a Nul | Poi nt er Except i on. This is because the
subclass constructor implicitly calls the superclass constructor, which in turn calls the overridden i ni t method
before the field s is initialized in the subclass constructor.

1 public class Super {

2 public Super() {

3 init();

4 }

5

6 public void init() {

7 }

8 }

9

10 public class Sub extends Super {
11 String s;

12 int length;

13

14 public Sub(String s) {
15 this.s = s==null ? "" : s;
16 }

17

18 @verride

19 public void init() {

20 length = s.length();
21 }

22 '}

To avoid this problem:

® Theinit method in the super constructor should be made final or private.

® The initialization that is performed in the overridden i ni t method in the subclass can be moved to the
subclass constructor itself, or delegated to a separate final or private method that is called from within the
subclass constructor.

References

® J. Bloch, Effective Java (second edition), pp. 89—90. Addison-Wesley, 2008.
® The Java Tutorials: Writing Final Classes and Methods.

JPL Java Coding Standard v1.0 March 31, 2014. Page 108

http://docs.oracle.com/javase/tutorial/java/IandI/final.html

Critical rules

Do not perform self-assignment

...

Category: Critical > Logic Errors

Description: Assigning a variable to itself has no effect.

Assigning a variable to itself does not have any effect. Therefore, such an assignment is either completely
unnecessary, or it indicates a typo or a similar mistake.

Recommendation

If the assignment is unnecessary, remove it. If the assignment indicates a typo or a similar mistake, correct the
mistake.

Example

The following example shows part of a method that is intended to make a copy of an existing Mt i onEvent without
preserving its history. On line 8, o. nFl ags is assigned to itself. Given that the statement is surrounded by
statements that transfer information from the fields of o to the fields of the new event, ev, the statement is clearly
a mistake. To correct this, the nFl ags value should be assigned to ev. nfl ags instead, as shown in the corrected
method.

1 static public MtionEvent obtai nNoHi story(MtionEvent o) {
2 Mot i onEvent ev = obtai n(o. mMunPoi nters, 1);

3 ev. nDevi cel d = o. nDevi cel d;

4 o.nFlags = o.nFlags; // Variable is assigned to itself
5

6 }

7

8 static public MdtionEvent obtai nNoH story(MtionEvent o) {
9 Mot i onEvent ev = obtai n(o. mMunPoi nters, 1);

10 ev. nDevi cel d = o. nDevi cel d;

11 ev.nFlags = o.nFlags; // Variable is assigned correctly
12

13 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 109

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Critical rules

Include braces for control structures

...

Category: Critical > Logic Errors

Description: If a control structure does not use braces, misleading indentation makes it difficult to see
which statements are within its scope.

A control structure (i f statements and loops) has a body that is either a block of statements or a single
statement. The second option may be indicated by omitting the braces: { and }.

However, omitting the braces can lead to confusion, especially if the indentation of the code suggests that
multiple statements are within the body of a control structure when in fact they are not.

Recommendation

It is usually considered good practice to include braces for all control structures in Java. This is because it makes
it easier to maintain the code later. For example, it's easy to see at a glance which part of the code is in the scope
of an i f statement, and adding more statements to the body of the i f statement is less error-prone.

You should also ensure that the indentation of the code is consistent with the actual flow of control, so that it does
not confuse programmers.

Example

In the example below, the original version of cart is missing braces. This means that the code triggers a
Nul | Poi nt er Excepti on at runtime if i is nul | . The corrected version of cart does include braces, so that the code
executes as the indentation suggests.

1 class Cart {

2 Map<l nteger, Integer> itens = ...

3 public void addlten{ltemi) {

4 /1 No braces and mi sl eadi ng i ndentati on.

5 if (i '=null)

6 log("Adding item " + i);

7 Integer curQuantity = itens.get(i.getlD()); // Indentation suggests that this statenment
8 // is in the body of the "if'
9 if (curQuantity == null) curQuantity = O;
10 items. put(i.getlD(), curQuantity+1);

11 }

12}

13

14 class Cart {

15 Map<l nteger, Integer> itens =

16 public void addlten(ltemi) {

17 /1 Braces included.

18 if (i '=null) {

19 log("Adding item " + i);

20 Integer curQuantity = itens.get(i.getlD());
21 if (curQuantity == null) curQuantity = O;
22 itens.put(i.getlD(), curQuantity+1);

23 }

24 }

25 '}

References

® Java SE Documentation: Compound Statements.

JPL Java Coding Standard v1.0 March 31, 2014. Page 110

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#15395

Critical rules

Naming

® Avoid declaring a method with the same name as its declaring type
® Avoid naming a method with the same name as a superclass method but with different capitalization

JPL Java Coding Standard v1.0 March 31, 2014. Page 111

Critical rules

Avoid declaring a method with the same name as its declaring type

...

Category: Critical > Naming

Description: A method that has the same name as its declaring type may have been intended to be a
constructor.

A method that has the same name as its declaring type may be intended to be a constructor, not a method.

Example

The following example shows how the singleton design pattern is often misimplemented. The programmer
intends the constructor of Mast er Si ngl et on to be protected so that it cannot be instantiated (because the singleton
instance should be retrieved using get I nst ance). However, the programmer accidentally wrote voi d in front of the
constructor name, which makes it a method rather than a constructor.

1 class MasterSingleton

2 {

3 /1

4

5 private static MasterSingleton singleton = new MasterSingleton();

6 public static MasterSingleton getlnstance() { return singleton; }

7

8 /1 Make the constructor 'protected to prevent this class frombeing instantiated.
9 protected void MasterSingleton() { }

10 }

Recommendation

Ensure that methods that have the same name as their declaring type are intended to be methods. Even if they
are intended to be methods, it may be better to rename them to avoid confusion.

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 63. Addison-Wesley,
2005.

® E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Objection-Oriented
Software, §3. Addison-Wesley Longman Publishing Co. Inc., 1995.

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

® Java Language Specification: 8.4 Method Declarations, 8.8 Constructor Declarations.

JPL Java Coding Standard v1.0 March 31, 2014. Page 112

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.8

Critical rules

Avoid naming a method with the same name as a superclass method but with different
capitalization

...

Category: Critical > Naming

Description: A method that would override another method but does not, because the name is capitalized
differently, is confusing and may be a mistake. :

If a method that would override another method but does not because the name is capitalized differently, there
are two possibilities:

® The programmer intends the method to override the other method, and the difference in capitalization is a
typographical error.

® The programmer does not intend the method to override the other method, in which case the similarity of
the names is very confusing.

Recommendation
If overriding is intended, make the capitalization of the two methods the same.

If overriding is not intended, consider naming the methods to make the distinction between them clear.

Example

In the following example, t oSt ri ng has been wrongly capitalized as t ost ri ng. This means that objects of type
cust oner do not print correctly.

1 public class Custoner

2

3 private String title;

4 private String forenane;

5 private String surnang;

6

7 ...

8

9 public String tostring() { // Incorrect capitalization of '"toString'
10 return title + " " + forenane + " " + surnang;
11 }

12}

References

¢ R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.N4. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 113

Critical rules

Random

® Avoid using 'Math.abs' to generate a non-negative random integer

JPL Java Coding Standard v1.0 March 31, 2014. Page 114

Critical rules

Avoid using 'Math.abs' to generate a non-negative random integer

...

Category: Critical > Random

Description: Calling 'Math.abs' to find the absolute value of a randomly generated integer is not
guaranteed to return a non-negative integer.

Using Mat h. abs on the result of a call to Random next I nt () (Or Random next Long()) iS hot guaranteed to return a
non-negative number. Random next I nt () can return | nt eger. M N_VALUE, which when passed to Mt h. abs results in
the same value, | nt eger. M N_VALUE. (Because of the two's-complement representation of integers in Java, the
positive equivalent of | nt eger . M N_VALUE cannot be represented in the same number of bits.) The case for
Random next Long() is similar.

Recommendation

If a non-negative random integer is required, use Random next I nt (i nt) instead, and use I nt eger . MAX_VALUE as its
parameter. The values that might be returned do not include | nt eger . MAX_VALUE itself, but this solution is likely to
be sufficient for most purposes.

Another solution is to increment the value of Random next I nt () by one, if it is negative, before passing the result to
Mat h. abs. This solution has the advantage that 0 has the same probability as other numbers.

Example

In the following example, mayBeNegat i vel nt iS negative if next | nt returns I nt eger. M N_VALUE. The example shows
how using the two solutions described above means that posi ti vel nt is always assigned a positive number.

1 public static void main(String args[]) {

2 Random r = new Randon{();

3

4 /1 BAD: 'nmayBeNegativelnt' is negative if

5 /1 "nextInt()' returns 'Integer.M N _VALUE .

6 int mayBeNegativelnt = Math.abs(r.nextInt());

7

8 /] GOOD: 'nonNegativelnt' is always a value between 0 (inclusive)
9 /1 and I nteger. MAX VALUE (excl usive).

10 int nonNegativelnt = r.nextlnt(lnteger. MVAX_VALUE);

11

12 /] GOOD: When 'nextlnt' returns a negative nunber increnent the returned val ue.
13 int nextlnt = r.nextlnt();

14 if(nextint < 0)

15 next | nt ++;

16 int nonNegativelnt = Math. abs(nextlnt);

17 '}

References

® Java API Documentation: Math.abs(int), Math.abs(long), Random.
® Java Language Specification, 3rd ed: 4.2.1 Integral Types and Values.
® JavaSolutions, April 2002: Secrets of equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 115

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#abs%28int%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#abs%28long%29
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/specs/jls/se5.0/html/typesValues.html#4.2.1
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

Critical rules

Resource Leaks

® Ensure that an input resource is closed on completion
® Ensure that an output resource is closed on completion

JPL Java Coding Standard v1.0 March 31, 2014. Page 116

Critical rules

Ensure that an input resource is closed on completion

...

Category: Critical > Resource Leaks

Description: A resource that is opened for reading but not closed may cause a resource leak.

A subclass of Reader or I nput St r eamthat is opened for reading but not closed may cause a resource leak.

Recommendation

Ensure that the resource is always closed to avoid a resource leak. Note that, because of exceptions, it is safest
to close a resource in a final Iy block. (However, this is unnecessary for subclasses of stri ngreader and
Byt eAr rayl nput St ream)

Example

In the following example, the resource br is opened but not closed.

1 public class O oseReader {

2 public static void main(String[] args) throws | OException {

3 Buf f eredReader br = new BufferedReader (new Fil eReader ("C:\\test.txt"));
4 System out. println(br.readLine());

5 /1

6 }

7}

In the following example, the resource br is opened in atry block and later closed in a final I y block.

1 public class O oseReaderFix {

2 public static void main(String[] args) throws |COException {
3 Buf f eredReader br = null;

4 try {

5 br = new Buf f eredReader (new Fi |l eReader ("C:\\test.txt"));
6 System out. println(br.readLine());

7 }

8 finally {

9 if(br !'=null)

10 br.close(); // "br' is closed

11 }

12 /1

13 }

14}

References

* |BM developerWorks: Java theory and practice: Good housekeeping practices.

JPL Java Coding Standard v1.0 March 31, 2014. Page 117

http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html

Critical rules

Ensure that an output resource is closed on completion

...

Category: Critical > Resource Leaks

Description: A resource that is opened for writing but not closed may cause a resource leak.

A subclass of witer or aut put St reamthat is opened for writing but not properly closed later may cause a resource
leak.

Recommendation

Ensure that the resource is always closed to avoid a resource leak. Note that, because of exceptions, it is safest
to close a resource properly in a final 1y block. (However, this is unnecessary for subclasses of stringwiter and
Byt eAr r ayQut put St r eam)

Example

In the following example, the resource bwis opened but not closed.

1 public class CoseWiter {

2 public static void main(String[] args) throws | OException {

3 BufferedWiter bw = new BufferedWiter(new FileWiter("C\\test.txt"));
4 bw.wite("Hello world!");

5 /1

6 }

7}

In the following example, the resource bwis opened in a try block and later closed in a final I y block.

1 public class CoseWiterFix {

2 public static void main(String[] args) throws | OException {
3 Buf feredWiter bw = null;

4 try {

5 bw = new BufferedWiter(new FileWiter("C\\test.txt"));
6 bw.wite("Hello world!");

7 }

8 finally {

9 if(bw!= null)

10 bw. close(); // "bw is closed

11 }

12 /1

13 }

14 }

References

* |BM developerWorks: Java theory and practice: Good housekeeping practices.

JPL Java Coding Standard v1.0 March 31, 2014. Page 118

http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html

Critical rules

Strings

* Avoid appending an array to a string without converting it to a string
® Avoid calling the default implementation of 'toString'
® Avoid printing an array without converting it to a string

JPL Java Coding Standard v1.0 March 31, 2014. Page 119

Critical rules

Avoid appending an array to a string without converting it to a string

...

Category: Critical > Strings

Description: Appending an array to a string, without first converting the array to a string, produces
unreadable results.

Appending an array to a Stri ng is likely to produce unintended results. That is, the result does not contain the
contents of the array. This is because the array is implicitly converted to a stri ng using j ect. t oSt ri ng, which
just returns the following value:

getd ass().getNane() + '@ + Integer.toHexString(hashCode())

Recommendation

When converting an array to a readable string, use Arrays. t oSt ri ng for one-dimensional arrays, or
Arrays. deepToSt ri ng for multi-dimensional arrays. These functions iterate over the contents of the array and
produce human-readable output.

Example

In the following example, the contents of the array wor ds are printed out only if Arrays. t oStri ng is called on the
array first. Similarly, the contents of the multi-dimensional array wor dvat ri x are printed out only if
Arrays. deepToString is called on the array first.

1 public static void main(String args[]) {

2 String[] words = {"Wo", "is", "John", "Galt"};

3 String[][] wordMatrix = {{"There", "is"}, {"no", "spoon"}};

4

5 /1 BAD: This inplicitly uses 'Object.toString' to convert the contents

6 /1 of 'words[]', and prints out sonmething simlar to:

7 /1 Words: [Ljava.lang. String; @59189¢el

8 Systemout.println("Wrds: " + words);

9

10 // GOOD: 'Arrays.toString' calls '"toString' on

11 /'l each of the array's elenents. The statenent prints out:

12 /1 Words: [Wo, is, John, Galt]

13 Systemout.println("Wrds: " + Arrays.toString(words));

14

15 /1 ALMOST RICHT: This calls "toString' on each of the multi-dinensional

16 /1 array's elenents. However, because the elenents are arrays, the statement
17 /] prints out sonething simlar to:

18 /1 Word matrix: [[Ljava.lang. String; @5f33675, [Ljava.lang.String; @27c6768]]
19 Systemout.println("Wrd matrix: " + Arrays.toString(wordMatrix));

20

21 /] GOOD: This properly prints out the contents of the nulti-dinensional array:
22 /1 Word matrix: [[There, is], [no, spoon]]

23 Systemout.println("Wrd matrix: " + Arrays.deepToString(wordMatrix));

24}

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java 6 API Specification: Arrays.toString(), Arrays.deepToString(), Object.toString().

JPL Java Coding Standard v1.0 March 31, 2014. Page 120

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()

Critical rules

Avoid calling the default implementation of 'toString'

...

Category: Critical > Strings

Description: Calling the default implementation of 'toString’ returns a value that is unlikely to be what you
expect.

In most cases, calling the default implementation of t oStri ng in j ava. | ang. Qbj ect is not what is intended when a
string representation of an object is required. The output of the default t oSt ri ng method consists of the class
name of the object as well as the object's hashcode, which is usually not what was intended.

This rule includes explicit and implicit calls to t oSt ri ng that resolve to j ava. | ang. Obj ect . t oSt ri ng, particularly
calls that are used in print or log statements.

Recommendation

For objects that are printed, define a t oSt ri ng method for the object that returns a human-readable string.

Example

The following example shows that printing an object makes an implicit call to t oSt ri ng. Because the class
W ongPer son does not have a t oStri ng method, hj ect. t oSt ring is called instead, which returns the class name
and the wp object's hashcode.

1 // This class does not have a 'toString' nethod, so 'java.lang. Object.toString'
2 |/ is used when the class is converted to a string.

3 class WongPerson {

4 private String nang;

5 private Date birthbDate;

6

7 public WongPerson(String name, Date birthDate) {

8 t hi s. name =naneg;

9 this.birthDate = birthDate;

10 }

11}

12

13 public static void main(String args[]) throws Exception {

14 Dat eFor mat dat eFormatter = new Si npl eDat eFormat ("yyyy- Mt dd") ;

15 W ongPerson wp = new WongPerson("Robert Van Wnkle", dateFornatter.parse("1967-10-31"));
16

17 /1 BAD: The follow ng statenent inplicitly calls 'Object.toString',
18 /1 which returns sonmething simlar to:

19 /1 W ongPerson@383f 74d

20 System out. println(wp);

21}

In contrast, in the following modification of the example, the class Per son does have a t oSt ri ng method, which
returns a string containing the arguments that were passed when the object p was created.

1 // This class does have a 'toString' method, which is used when the object is
2 |/ converted to a string.
3 class Person {

4 private String namne;

5 private Date birthDate;

6

7 public String toString() {

8 Dat eFor mat dat eFormatter = new Si npl eDat eFormat ("yyyy- Mt dd");

9 return "(Nane: " + nane + ", Birthdate: " + dateFornatter.format(birthDate) + ")";
10 }

11

JPL Java Coding Standard v1.0 March 31, 2014. Page 121

Critical rules

12 public Person(String name, Date birthDate) {

13 thi s. name =nare;

14 this.birthDate = birthDate;

15 }

16 }

17

18 public static void main(String args[]) throws Exception {

19 Dat eFor mat dat eFormatter = new Si npl eDat eFormat ("yyyy- Mt dd") ;

20 Person p = new Person("Eric Arthur Blair", dateFormatter.parse("1903-06-25"));
21

22 /] GOOD: The followi ng statenent inplicitly calls 'Person.toString',
23 /1 which correctly returns a human-readabl e string:

24 [/ (Name: Eric Arthur Blair, Birthdate: 1903-06-25)

25 System out. println(p);

26 '}

References

* J. Bloch, Effective Java (second edition), ltem 10. Addison-Wesley, 2008.
® Java 6 API Specification: Object.toString().
® Java Language Specification, 3rd ed: 5.4 String Conversion.

JPL Java Coding Standard v1.0 March 31, 2014. Page 122

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()
http://docs.oracle.com/javase/specs/jls/se5.0/html/conversions.html#186035

Critical rules

Avoid printing an array without converting it to a string

...

Category: Critical > Strings

Description: Directly printing an array, without first converting the array to a string, produces unreadable
results.

Printing an array is likely to produce unintended results. That is, the result does not contain the contents of the
array. This is because the array is implicitly converted to a string using bj ect . t oSt ri ng, which just returns the
following value:

getd ass().getNanme() + '@ + Integer.toHexString(hashCode())

Recommendation

When converting an array to a readable string, use Arrays. t oSt ri ng for one-dimensional arrays, or
Arrays. deepToSt ri ng for multi-dimensional arrays. These functions iterate over the contents of the array and
produce human-readable output.

Example

In the following example, the contents of the array wor ds can be printed out only if Arrays. toString is called on
the array first. Similarly, the contents of the multi-dimensional array wor dvat ri x can be printed out only if
Arrays. deepToString is called on the array first.

1 public static void main(String args[]) {

2 String[] words = {"Wo", "is", "John", "Galt"};

3 String[][] wordMatrix = {{"There", "is"}, {"no", "spoon"}};

4

5 /1 BAD: This inplicitly uses 'Object.toString' to convert the contents
6 /1 of "words[]', and prints out something simlar to:

7 /'l [Ljava.lang. String; @59189el

8 System out . printl n(words);

9

10 /1 GOOD: 'Arrays.toString' calls 'toString' on

11 /1 each of the array's elenments. The statenent prints out:

12 /1 [Who, is, John, Galt]

13 System out.println(Arrays.toString(words));

14

15 /1 ALMOST RIGHT: This calls 'toString" on each of the multi-dimensional
16 /1 array's elenents. However, because the elenents are arrays, the statenent
17 /1 prints out sonething simlar to:

18 /1 [[Ljava.lang. String; @5f33675, [Ljava.lang. String; @27c6768]]

19 System out. println(Arrays.toString(wordMatrix));

20

21 /1 GOOD: This properly prints out the contents of the nulti-dinensional array:
22 /1 [[There, is], [no, spoon]]

23 System out. println(Arrays. deepToString(wordMatrix));

24 '}

References

® Java 6 APl Documentation: Arrays.toString(), Arrays.deepToString(), Object.toString().

JPL Java Coding Standard v1.0 March 31, 2014. Page 123

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#toString()

Critical rules

Types

® Avoid boxed types

JPL Java Coding Standard v1.0 March 31, 2014. Page 124

Critical rules

Avoid boxed types

...

Category: Critical > Types

Description: Implicit boxing or unboxing of primitive types, such as 'int" and ‘double’, may cause confusion
and subtle performance problems. :

For each primitive type, such as i nt or doubl e, there is a corresponding boxed reference type, such as | nt eger or
Doubl e. These boxed versions differ from their primitive equivalents because they can hold an undefined nul |
element in addition to numeric (or other) values, and there can be more than one instance of a boxed type
representing the same value.

In Java 5 and later, automated boxing and unboxing conversions have been added to the language. Although
these automated conversions reduce the verbosity of the code, they can hide potential problems. Such problems
include performance issues because of unnecessary object creation, and confusion of boxed types with their
primitive equivalents.

Recommendation

Generally, you should use primitive types (boolean, byte, char, short, int, long, float, double) in preference to
boxed types (Boolean, Byte, Character, Short, Integer, Long, Float, Double), whenever there is a choice.
Exceptions are when a primitive value is used in collections and other parameterized types, or when a nul | value
is explicitly used to represent an undefined value.

Where they cannot be avoided, perform boxing and unboxing conversions explicitly to avoid possible confusion of
boxed types and their primitive equivalents. In cases where boxing conversions cause performance issues, use
primitive types instead.

Example

In the following example, declaring the variable sumto have boxed type Long causes it to be unboxed and reboxed
during execution of the statement inside the loop.
Long sum = OL;

1
2 for (long k = 0; k < Integer. MAX_VALUE;, k++) {

3 sum += k; // AVAO D: Inefficient unboxing and reboxing of 'suni
4

}

To avoid this inefficiency, declare sumto have primitive type | ong instead.

References

J. Bloch, Effective Java (second edition), Item 49. Addison-Wesley, 2008.
Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
Java Language Specification: 5.1.7 Boxing Conversion.

[}
[]
[]
® Java SE Documentation: Autoboxing.

JPL Java Coding Standard v1.0 March 31, 2014. Page 125

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html#jls-5.1.7
http://docs.oracle.com/javase/6/docs/technotes/guides/language/autoboxing.html

Important rules

Important

Rules in this category should be followed and violations of these rules should be corrected where practical.
Rule types:

Arithmetic (1)
Complexity
Concurrency (1)
Coupling
Declarations (2)
Duplicate Code
Encapsulation (1)
Equality (1)
Exceptions (1)
Expressions (1)
Extensibility (1)
Incomplete Code (1)
Inefficient Code
Java objects (2)
JUnit

Logic Errors (1)
Magic Constants
Naming (2)
Random (1)
Result Checking
Size

Spring

Strings (1)
Swing

Types (2)
Useless Code

JPL Java Coding Standard v1.0 March 31, 2014. Page 126

Important rules

Arithmetic (1)

® Avoid checking the sign of the result of a bitwise operation
® Avoid confusion when multiplying a remainder by an integer
® Do not check parity by comparing to a positive number

JPL Java Coding Standard v1.0 March 31, 2014. Page 127

Important rules

Avoid checking the sign of the result of a bitwise operation

...

Category: Important > Arithmetic (1)

Description: Checking the sign of the result of a bitwise operation may yield unexpected results.

...

Checking whether the result of a bitwise operation is greater than zero may yield unexpected results.

Recommendation

It is more robust to check whether the result of the bitwise operation is non-zero.

Example

In the following example, the expression assigned to variable bad is not a robust way to check that the nth bit of x
is set. With the given values of x (all bits are set) and n, the expression x & (1<<n) has the value - 2147483648, and
the variable bad is assigned f al se, even though the 31st bit of x is, in fact, set.

int x
n 3

1 = -1;
2 int = 31;
3

4 boolean bad = (x & (1<<n)) > 0;

In the following example, the expression assigned to variable good is a robust way to check that the nth bit of x is
set. With the given values of x and n, the variable good is assigned tr ue.

int x
int n

- :]_7
31;

1
2
3
4 bool ean good = (x & (1<<n)) != 0O;

References

® The Java Language Specification: Integer Bitwise Operators &, #, and |.

JPL Java Coding Standard v1.0 March 31, 2014. Page 128

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.22.1

Important rules

Avoid confusion when multiplying a remainder by an integer

...

Category: Important > Arithmetic (1)

Description: Using the remainder operator with the multiplication operator without adding parentheses to
clarify precedence may cause confusion.

Using the remainder operator %with the multiplication operator may not give you the result that you expect unless
you use parentheses. This is because the remainder operator has the same precedence as the multiplication
operator, and the operators are left-associative.

Recommendation

When you use the remainder operator with the multiplication operator, ensure that the expression is evaluated as
you expect. If necessary, add parentheses.

Example

Consider a time in milliseconds, represented by t. To calculate the number of milliseconds remaining after the
time has been converted to whole minutes, you might write t % 60 * 1000. However, this is equal to (t % 60) *
1000, which gives the wrong result. Instead, the expression should be t % (60 * 1000).

References

¢ J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 35. Addison-Wesley,
2005.
® The Java Tutorials: Operators.

JPL Java Coding Standard v1.0 March 31, 2014. Page 129

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Important rules

Do not check parity by comparing to a positive number

...

Category: Important > Arithmetic (1)

Description: Code that uses 'x % 2 == 1' or 'x % 2 > 0' to check whether a number is odd does not work
for negative numbers.

Avoid using x %2 == 10rx %2 > 0 to check whether a number x is odd, or x %2 != 1 to check whether it is
even. Such code does not work for negative numbers. For example, -5 % 2 equals - 1, not 1.

Recommendation

Consider using x % 2 != 0 to check for odd and x % 2 == 0 to check for even.

Example

-9 is an odd number but this example does not detect it as one. This is because -9 % 2 is -1, not 1.

cl ass CheckOdd {
private static boolean isOdd(int x) {
return x %2 == 1;

}

public static void main(String[] args) {
Systemout.println(isQdd(-9)); // prints false

1
2
3
4
5
6
7
8 }
9

}

It would be better to check if the number is even and then invert that check.

1 class CheckQdd {

2 private static boolean isOdd(int x) {

3 return x %2 != 0;

4 }

5

6 public static void main(String[] args) {

7 Systemout.println(isOQdd(-9)); // prints true
8 }

9 1}

References

® J. Bloch and N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, Puzzle 1. Addison-Wesley, 2005.
® The Java Language Specification: Remainder Operator %.

JPL Java Coding Standard v1.0 March 31, 2014. Page 130

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3

Important rules

Complexity

® Avoid creating classes that have a high response
® Avoid creating methods that call many other methods
® Avoid creating methods that have a high cyclomatic complexity

JPL Java Coding Standard v1.0 March 31, 2014. Page 131

Important rules

Avoid creating classes that have a high response

...

Category: Important > Complexity

Description: A class whose methods or constructors can call many unique methods or constructors may
be difficult to maintain. The number of unique methods that are called should be less than 350.

Response is the number of unique methods (or constructors) that can be called by all the methods (or
constructors) of a class. For example, if a class has two methods (X and Y), and one method calls methods A
and B, and the other method calls methods A and C, the class's response is 3 (methods A, B, and C are called).

Classes that have a high response can be difficult to understand and test. This is because you have to read
through all the methods that can possibly be called to fully understand the class.

Recommendation

Generally, when a class has a high response, it is because it contains methods that individually make large
numbers of calls or because it has high efferent coupling. The solution is therefore to fix these underlying
problems, and the class's response decreases accordingly.

References

® S. R. Chidamber and C. F. Kemerer, A metrics suite for object-oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, 1994.

JPL Java Coding Standard v1.0 March 31, 2014. Page 132

Important rules

Avoid creating methods that call many other methods

...

Category: Important > Complexity

Description: A method or constructor that calls many other methods may be difficult to maintain. The
number of other methods that are called should be less than 100.

If the number of calls that is made by a method (or constructor) to other methods is high, the method can be
difficult to understand, because you have to read through all the methods that it calls to fully understand what it
does. There are various reasons why a method may make a high number of calls, including:

® The method is simply too large in general.
® The method has too many responsibilities (see [Martin]).
®* The method spends all of its time delegating rather than doing any work itself.

Recommendation
The appropriate action depends on the reason why the method makes a high number of calls:

® If the method is too large, you should refactor it into multiple smaller methods, using the 'Extract Method'
refactoring from [Fowler], for example.

® |f the method is taking on too many responsibilities, a new layer of methods can be introduced below the
top-level method, each of which can do some of the original work. The top-level method then only needs to
delegate to a much smaller number of methods, which themselves delegate to the methods lower down.

* If the method spends all of its time delegating, some of the work that is done by the subsidiary methods
can be moved into the top-level method, and the subsidiary methods can be removed. This is the
refactoring called 'Inline Method' in [Fowler].

References

® M. Fowler, Refactoring. Addison-Wesley, 1999.
® R. Martin, The Single Responsibility Principle. Published online.

JPL Java Coding Standard v1.0 March 31, 2014. Page 133

http://www.objectmentor.com/resources/articles/srp.pdf

Important rules

Avoid creating methods that have a high cyclomatic complexity

...

Category: Important > Complexity

Description: A high number of possible execution paths through a method or constructor may make it
difficult to understand and test. The number of execution paths should be less than 40.

The cyclomatic complexity of a method (or constructor) is the number of possible linearly-independent execution
paths through that method (see [Wikipedia]). It was originally introduced as a complexity measure by Thomas
McCabe [McCabe].

A method with high cyclomatic complexity is typically difficult to understand and test.

Example

1 int f(int i, int j) {

2 int result;

3 if(i %2 ==0) {

4 result =i + j;

5 }

6 el se {

7 if(j 2 ==0) {

8 result =i * j;
9 }

10 el se {

11 result =i - j;
12 }

13 }

14 return result;

15 }

The control flow graph for this method is as follows:

As you can see from the graph, the number of linearly-independent execution paths through the method is 3.
Therefore, the cyclomatic complexity is 3.

JPL Java Coding Standard v1.0 March 31, 2014. Page 134

Important rules

Recommendation

Simplify methods that have a high cyclomatic complexity. For example, tidy up complex logic, and/or split
methods into multiple smaller methods using the 'Extract Method' refactoring from [Fowler].

References

®* M. Fowler, Refactoring. Addison-Wesley, 1999.
® T.J. McCabe, A Complexity Measure. IEEE Transactions on Software Engineering, SE-2(4), December

1976.
® Wikipedia: Cyclomatic complexity.

JPL Java Coding Standard v1.0 March 31, 2014. Page 135

http://en.wikipedia.org/wiki/Cyclomatic_complexity

Important rules

Concurrency (1)

® API Misuse (1)

JPL Java Coding Standard v1.0 March 31, 2014. Page 136

Important rules

API Misuse (1)

® Do not directly call 'run’

JPL Java Coding Standard v1.0 March 31, 2014. Page 137

Important rules

Do not directly call ‘run’

Category: Important > Concurrency (1) > APl Misuse (1)

Description: Directly calling a 'Thread' object's 'run' method does not start a separate thread but executes
the method within the current thread.

A direct call of a Thread object's run method does not start a separate thread. The method is executed within the
current thread. This is an unusual use because Thread. run() is normally intended to be called from within a
separate thread.

Recommendation
To execute Runnabl e. run from within a separate thread, do one of the following:

® Construct a Thread object using the Runnabl e object, and call st art on the Thr ead object.
® Define a subclass of a Thr ead object, and override the definition of its run method. Then construct an
instance of this subclass and call st art on that instance directly.

Example

In the following example, the main thread, Thr eadDeno, calls the child thread, NewThr ead, using run. This causes
the child thread to run to completion before the rest of the main thread is executed, so that "Child thread activity"
is printed before "Main thread activity".

1 public class ThreadDenp {

2 public static void main(String args[]) {

3 NewThr ead runnabl e = new NewThread();

4

5 runnabl e. run(); /1 Call to 'run' does not start a separate thread
6

7 Systemout.printin("Main thread activity.");

8 }

9}

10

11 class NewThread extends Thread {

12 public void run() {

13 try {

14 Thr ead. sl eep(10000) ;

15 }

16 catch (InterruptedException e) {

17 Systemout.printin("Child interrupted.");
18 }

19 Systemout.println("Child thread activity.");
20 }

21}

To enable the two threads to run concurrently, create the child thread and call st art, as shown below. This
causes the main thread to continue while the child thread is waiting, so that "Main thread activity" is printed
before "Child thread activity".

1 public class ThreadDenp {

2 public static void nain(String args[]) {

3 NewThr ead runnabl e = new NewThread();

4

5 runnabl e.start(); // Call 'start' nethod
6

7 Systemout.printin("Main thread activity.");

8 }

9}

JPL Java Coding Standard v1.0 March 31, 2014. Page 138

Important rules

References

® The Java Tutorials: Defining and Starting a Thread.

JPL Java Coding Standard v1.0 March 31, 2014. Page 139

http://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

Important rules

Coupling

Avoid creating classes that depend on many other types
Avoid feature envy from a method to a class

Avoid hub classes

Avoid inappropriate intimacy between classes

JPL Java Coding Standard v1.0 March 31, 2014. Page 140

Important rules

Avoid creating classes that depend on many other types

...

Category: Important > Coupling

Description: A class that depends on many other types is quite brittle. The number of dependencies on
other types should be less than 30.

Efferent coupling is the number of outgoing dependencies for each class. In other words, it is the number of other
types on which each class depends.

A class that depends on many other types is quite brittle, because if any of its dependencies change, the class
itself may have to change as well. Furthermore, the reason for the high number of dependencies is often that
different parts of the class depend on different groups of other types, so it is common to find that classes with
high efferent coupling also lack cohesion.

Recommendation

You can reduce efferent coupling by splitting up a class so that each part depends on fewer types.

Example

In the following example, class x depends on both Yy and z.

1 class X {

2 public void iUseY(Y y) {

3 y.doStuff();

4 }

5

6 public Y soDoY() {

7 return new Y();

8 }

9

10 public Z iUsez(Z z1, Z z2) {
11 return zl1.conbine(z2);
12 }

13 }

However, the methods that use Y do not use z, and the methods that use z do not use Y. Therefore, the class can
be split into two classes, one of which depends only on Y and the other only on z

1 class YX {

2 public void iUseY(Y y) {

3 y.doStuff();

4 }

5

6 public Y soDoY() {

7 return new Y();

8 }

9}

10

11 class zZX {

12 public Z iUsez(Z z1, Z z2) {
13 return z1l. conbine(z2);
14 }

15 }

Although this is a slightly artificial example, this sort of situation does tend to occur in more complicated classes,
so the general technique is quite widely applicable.

JPL Java Coding Standard v1.0 March 31, 2014. Page 141

Important rules

References

* |BM developerWorks: Evolutionary architecture and emergent design: Emergent design through metrics.
® R. Martin, Agile Software Development: Principles, Patterns and Practices. Pearson, 2011.

JPL Java Coding Standard v1.0 March 31, 2014. Page 142

http://www.ibm.com/developerworks/library/j-eaed6/

Important rules

Avoid feature envy from a method to a class

...

Category: Important > Coupling

Description: A method that uses more methods or variables from another (unrelated) class than from its
own class violates the principle of putting data and behavior in the same place.

Feature envy refers to situations where a method is "in the wrong place", because it does not use many methods
or variables of its own class, but uses a whole range of methods or variables from some other class. This violates
the principle of putting data and behavior in the same place, and exposes internals of the other class to the
method.

Recommendation

For each method that may be exhibiting feature envy, see if it needs to be declared in its present location, or if it
can be moved to the class it is "envious" of. A common example is a method that calls a large number of getters
on another class to perform some calculation that does not rely on anything from its own class. In such cases, the
method should be moved to the class containing the data. If the calculation depends on some values from the
method's current class, they can either be passed as arguments or accessed using getters from the other class.

If it is inappropriate to move the entire method, see if all the dependencies on the other class are concentrated in
just one part of the method. If so, they can be moved into a method of their own. This method can then be moved
to the other class and called from the original method.

If a class is envious of functionality defined in a superclass, perhaps the superclass needs to be re-written to
become more extensible and allow its subtypes to define new behavior without them depending so deeply on the
superclass's implementation. The template method pattern may be useful in achieving this.

Modern IDEs provide several refactorings that may be useful in addressing instances of feature envy, typically
under the names of "Move method" and "Extract method".

Occasionally behavior can be misinterpreted as feature envy when in fact it is justified. The most common
examples are complex design patterns like visitor or strategy, where the goal is to separate data from behavior.

Example

In the following example, initially the method get Tot al Pri ce is in the Basket class, but it only uses data belonging
to the 1t emclass. Therefore, it represents an instance of feature envy. To refactor it, get Tot al Pri ce can be moved
to I temand its parameter can be removed. The resulting code is easier to understand and keep consistent.

1 // Before refactoring:

2 class Item{ .. }

3 class Basket {

4 /1

5 float getTotal Price(ltemi) {

6 float price = i.getPrice() + i.getTax();
7 if (i.isOnSale())

8 price = price - i.getSal eDiscount() * price;
9 return price;

10 }

11}

12

13 // After refactoring:
14 class Item{

15 /..
16 float getTotal Price() {
17 float price = getPrice() + getTax();

JPL Java Coding Standard v1.0 March 31, 2014. Page 143

Important rules

18 if (isOnSale())

19 price = price - getSal eDi scount() * price;
20 return price;

21 }

22}

The refactored code is still appropriate, even if some data from the Basket class is necessary for the computation
of the total price. For example, if the Basket class applies a bulk discount when a sufficient number of items are in
the basket, an "additional discount" parameter can be added to It em get Tot al Pri ce(..). Alternatively, the
application of the discount can be performed in a method in Basket that calls It em get Tot al Pri ce.

References

® E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.
®* W. C. Wake, Refactoring Workbook, pp. 93-94. Addison-Wesley Professional, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 144

Important rules

Avoid hub classes

...

Category: Important > Coupling

Description: Hub classes, which are classes that use, and are used by, many other classes, are complex
and difficult to change without affecting the rest of the system.

A hub class is a class that depends on many other classes, and on which many other classes depend.
For the purposes of this rule, a dependency is any use of one class in another. Examples include:

® Using another class as the declared type of a variable or field

® Using another class as an argument type for a method

® Using another class as a superclass in the ext ends declaration

® (Calling a method defined in the class

A class can be regarded as a hub class when both the incoming dependencies and the outgoing source
dependencies are particularly high. (Outgoing source dependencies are dependencies on other source classes,
rather than library classes like j ava. | ang. Obj ect .)

It is undesirable to have many hub classes because they are extremely difficult to maintain. This is because many
other classes depend on a hub class, and so the other classes have to be tested and possibly adapted after each
change to the hub class. Also, when one of a hub class's direct dependencies changes, the behavior of the hub
class and all of its dependencies has to be checked and possibly adapted.

Recommendation

One common reason for a class to be regarded as a hub class is that it tries to do too much, including unrelated
functionality that depends on different parts of the code base. If possible, split such classes into several better
encapsulated classes.

Another common reason is that the class is a "struct-like" class that has many fields of different types. Introducing
some intermediate grouping containers to make it clearer what fields belong together may be a good option.

References

® E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.
®* W. C. Wake, Refactoring Workbook. Addison-Wesley Professional, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 145

Important rules

Avoid inappropriate intimacy between classes

...

Category: Important > Coupling

Description: Two otherwise-unrelated classes that share too much information about each other are
difficult to maintain, change and understand.

Inappropriate intimacy is an anti-pattern that describes a pair of otherwise-unrelated classes that are too tightly
coupled: each class uses a significant number of methods and fields of the other. This makes both classes
difficult to maintain, change and understand. Inappropriate intimacy is the same as the "feature envy" anti-pattern
but in both directions: each class is "envious" of some functionality or data defined in the other class.

Recommendation

The solution might be as simple as moving some misplaced methods to their rightful place, or perhaps some
tangled bits of code need to be extracted to their own methods first before being moved.

Sometimes the entangled parts (both fields and methods) indicate a missing object or level of abstraction. It might
make sense to combine them into a new type that can be used in both classes. Perhaps delegation needs to be
introduced to hide some implementation details.

It may be necessary to convert the bidirectional association into a unidirectional relationship, possibly by using
dependency inversion.

Modern IDEs provide refactoring support for this sort of issue, usually with the names "Move method", "Extract
method" or "Extract class".

References

® E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1995.
* W. C. Wake, Refactoring Workbook, pp. 95-96. Addison-Wesley Professional, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 146

Important rules

Declarations (2)

® Avoid assignment to parameters in a method or constructor
® Avoid using the same name for a field and a variable

JPL Java Coding Standard v1.0 March 31, 2014. Page 147

Important rules

Avoid assignment to parameters in a method or constructor

...

Category: Important > Declarations (2)

Description: Changing a parameter's value in a method or constructor may decrease code readability.

Programmers usually assume that the value of a parameter is the value that was passed in to the method or
constructor. Assigning a different value to a parameter in a method or constructor invalidates that assumption.

Recommendation
Avoid assignment to parameters by doing one of the following:

® Introduce a local variable and assign to that instead.
® Use an expression directly rather than assigning it to a parameter.

Example

In the following example, the first method shows assignment to the parameter ni | es. The second method shows
how to avoid this by using the expression mi | es * KM PER_M LE. The third method shows how to avoid the
assignment by declaring a local variable ki | onet res and assigning to that.

final private static double KM PER M LE = 1.609344;

1
2
3 // AVO D. Exanple that assigns to a paraneter
4 public double milesToKM double mles) {

5 mles *= KM PER_M LE;

6 return mles;

7

8

}

9 // GOOD: Exanple of using an expression instead
10 public double m|esToKM double mles) {

11 return mles * KM PER M LE;

12}

13

14 /] GOOD: Exanple of using a |ocal variable

15 public double m|esToKM double nmiles) {

16 doubl e kilonetres = mles * KM PER M LE;
17 return kil onetres;

18 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
¢ Java Basics: Methods 4 - Local variables.

JPL Java Coding Standard v1.0 March 31, 2014. Page 148

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://www.leepoint.net/JavaBasics/methods/methods-22-local-variables.html

Important rules

Avoid using the same name for a field and a variable

...

Category: Important > Declarations (2)

Description: A method in which a variable is declared with the same name as a field is difficult to
understand.

If a method declares a local variable with the same name as a field, then it is very easy to mix up the two when
reading or modifying the program.

Recommendation

Consider using different names for the field and local variable to make the difference between them clear.

Example

The following example shows a local variable val ues that has the same name as a field.

1 public class Container

2 {

3 private int[] values; // Field called 'values'
4

5 public Container (int... values) {

6 this.val ues = val ues;

7 }

8

9 public Container dup() {

10 int length = val ues. | ength;

11 int[] values = newint[length]; // Local variable called 'values'
12 Cont ai ner result = new Contai ner (val ues);
13 return result;

14 }

15 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 6.4 Shadowing and Obscuring.

JPL Java Coding Standard v1.0 March 31, 2014. Page 149

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4

Important rules

Duplicate Code

Avoid duplicate anonymous classes
Avoid duplicate methods

Avoid mostly duplicate classes
Avoid mostly duplicate files

Avoid mostly duplicate methods
Avoid mostly similar files

JPL Java Coding Standard v1.0 March 31, 2014. Page 150

Important rules

Avoid duplicate anonymous classes

...

Category: Important > Duplicate Code

Description: Duplicated anonymous classes indicate that refactoring is necessary.

Anonymous classes are a common way of creating implementations of an interface or abstract class whose
functionality is really only needed once. Duplicating the definition of an anonymous class in several places is
usually a sign that refactoring is necessary.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Introduce a concrete class that contains the definition just once, and replace the anonymous classes with
instances of this concrete class.

Example

In the following example, the definition of the class addActi onLi st ener is duplicated for each button that needs to
use it. A better solution is shown that defines just one class, Mil ti pl exi ngLi st ener, which is used by each button.

1 // BAD: Duplicate anonynous cl asses:
2 buttonl.addActi onLi stener(new ActionListener() {

3 public void actionPerfored(ActionEvent e)

4 {

5 for (ActionListener listener: |isteners)
6 |'i steners. acti onPerforned(e);

7 }

8 1)

9

10 button2. addActi onLi st ener (new ActionLi stener () {
11 public void actionPerfored(Acti onEvent e)

12 {

13 for (ActionListener listener: |isteners)
14 I'i steners. actionPerforned(e);

15 }

16 1);

17

18 // ... and so on.

19

20 // GOOD: Better solution:
21 class MiltiplexingListener inplenents ActionListener {

22 public void actionPerforned(ActionEvent e) {
23 for (ActionListener listener : |isteners)
24 |'i stener. actionPerformnmed(e);

25 }

26 '}

27

28 buttonl. addActi onLi stener (new Mil ti pl exi ngLi stener());
29 button2.addActi onLi stener(new Ml tipl exingListener());
30 // ... and so on.

JPL Java Coding Standard v1.0 March 31, 2014. Page 151

Important rules

References

® E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 152

Important rules

Avoid duplicate methods

...

Category: Important > Duplicate Code

Description: Duplicated methods make code more difficult to understand and introduce a risk of changes
being made to only one copy.

A method should never be duplicated exactly in several places in the code. The severity of this problem is higher
for longer methods than for extremely short methods of one or two statements, but there are usually better ways
of achieving the same effect.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

At its simplest, the duplication can be addressed by simply removing all but one of the duplicate method
definitions, and changing calls to the removed methods so that they call the remaining function instead.

This may not be possible because of visibility or accessibility. A common example is where two classes
implement the same functionality but neither is a subtype of the other, so it is not possible to inherit a single
method definition. In such cases, introducing a common superclass to share the duplicated code is a possible
option. Alternatively, if the methods do not need access to private object state, they can be moved to a shared
utility class that just provides the functionality itself.

Example

In the following example, Roww dget and Col umw dget contain duplicate methods. The col | ect ¢hi | dr en method
should probably be moved into the superclass, W dget , and shared between Roww dget and Col unnW dget .

1 class Roww dget extends Wdget {

2 ...

3 public void collectChildren(Set<Wdget> result) {
4 for (Wdget child : this.children) {

5 if (child.isVisible()) {

6 resul t.add(children);

7 child.collectChildren(result);

8

11}

13 class Col umW dget extends Wdget {

14 /1

15 public void collectChildren(Set<Wdget> result) {
16 for (Wdget child : this.children) {

17 if (child.isVisible()) {

18 resul t.add(children);

19 child.collectChildren(result);

23 }

Alternatively, if not all kinds of w dget actually need col | ect chi | dren (for example, not all of them have children),
it might be necessary to introduce a new, possibly abstract, class under w dget . For example, the new class might

JPL Java Coding Standard v1.0 March 31, 2014. Page 153

Important rules

be called cont ai ner W dget and include a single definition of col I ect Chi | dr en. Both RowW dget and Col urmW dget
could extend the class and inherit col | ect Chi | dren.

Modern IDEs may provide refactoring support for this sort of issue, usually with the names "Pull up" or "Extract
supertype".
References

® E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 154

Important rules

Avoid mostly duplicate classes

...

Category: Important > Duplicate Code

Description: Classes in which most of the methods are duplicated in another class make code more
difficult to understand and introduce a risk of changes being made to only one copy.

When most of the methods in one class are duplicated in one or more other classes, the classes themselves are
regarded as mostly duplicate.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated classes are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them.

It is more common to see duplication of many methods between two classes, leaving just a few that are actually
different. Decide whether the differences are intended or the result of an inconsistent update to one of the copies:

® |f the two classes serve different purposes but many of their methods are duplicated, this indicates that
there is a missing level of abstraction. Introducing a common super-class to define the common methods
is likely to prevent many problems in the long term. Modern IDEs may provide refactoring support for this
sort of issue, usually with the names "Pull up" or "Extract supertype".

® |f the two classes serve the same purpose and are different only as a result of inconsistent updates then
treat the classes as completely duplicate. Determine the most up-to-date and correct version of the code
and eliminate all near duplicates.

References

® E.Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 155

Important rules

Avoid mostly duplicate files

...

Category: Important > Duplicate Code

Description: Files in which most of the lines are duplicated in another file make code more difficult to
understand and introduce a risk of changes being made to only one copy.

When most of the lines in one file are duplicated in one or more other files, the files themselves are regarded as
mostly duplicate.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated files are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them. A common exception
is generated code that simply occurs in several places in the source tree.

It is more common to see duplication of many lines between two files, leaving just a few that are actually different.
Decide whether the differences are intended or the result of an inconsistent update to one of the copies:

* If the two files serve different purposes but many of their lines are duplicated, this indicates that there is a
missing level of abstraction. Look for ways to share the functionality, either by extracting a utility class for
parts of it or by encapsulating the common parts into a new super class of any classes involved.

* |f the two files serve the same purpose and are different only as a result of inconsistent updates then treat
the files as completely duplicate. Determine the most up-to-date and correct version of the code and
eliminate all near duplicates.

References

® E.Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 156

Important rules

Avoid mostly duplicate methods

...

Category: Important > Duplicate Code

Description: Methods in which most of the lines are duplicated in another method make code more
difficult to understand and introduce a risk of changes being made to only one copy.

When most of the lines in one method are duplicated in one or more other methods, the methods themselves are
regarded as mostly duplicate or similar.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Although completely duplicated methods are rare, they are usually a sign of a simple oversight (or deliberate
copy/paste) by a developer. Usually the required solution is to remove all but one of them.

It is more common to see duplication of many lines between two methods, leaving just a few that are actually
different. Decide whether the differences are intended or the result of an inconsistent update to one of the copies.

* |f the two methods serve different purposes but many of their lines are duplicated, this indicates that there
is a missing level of abstraction. Look for ways of encapsulating the commonality and sharing it while
retaining the differences in functionality. Perhaps the method can be moved to a single place and given an
additional parameter, allowing it to cover all use cases. Alternatively, there may be a common
pre-processing or post-processing step that can be extracted to its own (shared) method, leaving only the
specific parts in the existing methods. Modern IDEs may provide refactoring support for this sort of issue,
usually with the names "Extract method", "Change method signature”, "Pull up" or "Extract supertype".

* |f the two methods serve the same purpose and are different only as a result of inconsistent updates then
treat the methods as completely duplicate. Determine the most up-to-date and correct version of the code
and eliminate all near duplicates. Callers of the removed methods should be updated to call the remaining
method instead.

References

® E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 157

Important rules

Avoid mostly similar files

...

Category: Important > Duplicate Code

Description: Files in which most of the lines are similar to those in another file make code more difficult to
understand and introduce a risk of changes being made to only one copy.

When most of the lines in one file have corresponding "similar” lines in one or more other files, the files
themselves are regarded as mostly similar. Two lines are defined as similar if they are either identical or contain
only very minor differences.

Code duplication in general is highly undesirable for a range of reasons. The atrtificially inflated amount of code is
more difficult to understand, and sequences of similar but subtly different lines can mask the real purpose or
intention behind them. Also, there is always a risk that only one of several copies of the code is updated to
address a defect or add a feature.

Recommendation

Consider whether the differences are deliberate or a result of an inconsistent update to one of the clones. If the
latter, then treating the files as completely duplicate and eliminating all but one (while preserving any corrections
or new features that may have been introduced) is the best course. If two files serve genuinely different purposes
but almost all of their lines are the same, that can be a sign that there is a missing level of abstraction. Can some
of the shared code be extracted into methods (perhaps with additional parameters, to cover the differences in
behavior)? Should it be moved into a utility class or file that is accessible to all current implementations, or should
a new level of abstraction be introduced?

References

® E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? Proceedings of the 31st
International Conference on Software Engineering, 485-495, 2009.

JPL Java Coding Standard v1.0 March 31, 2014. Page 158

Important rules

Encapsulation (1)

® Avoid creating classes that lack cohesion
® Avoid creating subclasses that have a high specialization index
® Avoid exposing an object's internal representation

JPL Java Coding Standard v1.0 March 31, 2014. Page 159

Important rules

Avoid creating classes that lack cohesion

...

Category: Important > Encapsulation (1)

Description: A class that lacks cohesion probably has multiple responsibilities. The lack of cohesion
measure (LCOM) should be less than 3000.

A cohesive class is one in which most methods access the same fields. A class that lacks cohesion is usually one
that has multiple responsibilities.

Various measures of lack of cohesion have been proposed. The Chidamber and Kemerer version of lack of
cohesion inspects pairs of methods. If there are many pairs that access the same data, the class is cohesive. If
there are many pairs that do not access any common data, the class is not cohesive. More precisely, if:

® n1is the number of pairs of distinct methods in a class that do not have at least one commonly-accessed
field, and
® n2 is the number of pairs of distinct methods in a class that do have at least one commonly-accessed field,

the lack of cohesion measure (LCOM) can be defined as:
LCOM = max((nl-n2)/2,0)

High values of LCOM indicate a significant lack of cohesion. As a rough indication, an LCOM of 500 or more may
give you cause for concern.

Recommendation

Classes generally lack cohesion because they have more responsibilities than they should (see [Martin]). In
general, the solution is to identify each of the different responsibilities that the class has, and split them into
multiple classes, using the 'Extract Class' refactoring from [Fowler], for example.

References

® S. R. Chidamber and C. F. Kemerer, A metrics suite for object-oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, 1994.

®* M. Fowler, Refactoring, pp. 65, 122-5. Addison-Wesley, 1999.

® R. Martin, The Single Responsibility Principle. Published online.

® 0. de Moor et al, Keynote Address: .QL for Source Code Analysis. Proceedings of the 7th IEEE
International Working Conference on Source Code Analysis and Manipulation, 2007.

JPL Java Coding Standard v1.0 March 31, 2014. Page 160

http://www.objectmentor.com/resources/articles/srp.pdf

Important rules

Avoid creating subclasses that have a high specialization index

...

Category: Important > Encapsulation (1)

Description: A class that overrides much of the behavior of its ancestor classes indicates that the
abstractions in the ancestor classes should be reviewed. The specialization index should be less than 4.

Specialization index is the extent to which a subclass overrides the behavior of its ancestor classes. It is
computed as follows:

1. Determine the number of overridden methods in the subclass (not counting overrides of abstract methods).
2. Multiply this number by the subclass's depth in the inheritance hierarchy.
3. Divide the result by the subclass's total number of methods.

If a class overrides many of the methods of its ancestor classes, it indicates that the abstractions in the ancestor
classes should be reviewed. This is particularly true for subclasses that are lower down in the inheritance
hierarchy. In general, subclasses should add behavior to their superclasses, rather than redefining the behavior
that is already there.

Recommendation

The most common reason that classes have a high specialization index is that multiple subclasses specialize a
common base class in the same way. In this case, the relevant method(s) should be pulled up into the base class
(see the 'Pull Up Method' refactoring in [Fowler]).

Example

In the following example, duplicating get Name in each of the subclasses is unnecessary.

1 abstract class Animal {

2 protected String ani nal Nang;

3

4 public Animal (String name) {

5 ani mal Name = nane;

6 }

7

8 public String getNanme(){

9 return ani nal Nang;

10 }

11 public abstract String getKind();
12}

13

14 class Dog extends Aninmal {

15 public Dog(String nane) {

16 super (nane) ;

17 }

18

19 public String getNane() { // This method duplicates the nethod in class 'Cat'.
20 return aninal Nane + " the " + getKind();
21 }

22

23 public String getKind() {

24 return "dog";

25 }

26}

27

28 class Cat extends Animal {

29 public Cat(String nane) {

30 super (nane) ;

JPL Java Coding Standard v1.0 March 31, 2014. Page 161

Important rules

31 }

32

33 public String getNane() { // This nethod duplicates the nethod in class 'Dog'.
34 return animal Name + " the " + getKind();

35 }

36

37 public String getKind() {

38 return "cat";

39 }

40 }

To decrease the specialization index of the subclasses, pull up get Nane into the base class.

1 abstract class Animal {

2 private String ani nal Name;

3

4 public Animal (String nanme) {
5 ani mal Name = nane;

6 }

7

8 public String getNane() { // Method has been pulled up into the base class.
9 return animal Name + " the " + getKind();
10 }

11

12 public abstract String getKind();
13 }

14

15 class Dog extends Aninmal {

16 public Dog(String nane) {
17 super (nane) ;

18 }

19

20 public String getKind() {
21 return "dog";

22 }

23 '}

24

25 class Cat extends Animal {

26 public Cat(String name) {
27 super (name) ;

28 }

29

30 public String getKind() {
31 return "cat";

32 }

33 }

References

®* M. Fowler, Refactoring, pp. 260-3. Addison-Wesley, 1999.

® M. Lorenz and J. Kidd, Object-oriented Software Metrics. Prentice Hall, 1994.

® O. de Moor et al, Keynote Address: .QL for Source Code Analysis. Proceedings of the 7th IEEE
International Working Conference on Source Code Analysis and Manipulation, 2007.

JPL Java Coding Standard v1.0 March 31, 2014. Page 162

Important rules

Avoid exposing an object's internal representation

...

Category: Important > Encapsulation (1)

Description: An object that accidentally exposes its internal representation may allow the object's fields to
be modified in ways that the object is not prepared to handle. :

A subtle type of defect is caused when an object accidentally exposes its internal representation to the code
outside the object, and the internal representation is then (deliberately or accidentally) modified in ways that the
object is not prepared to handle. Most commonly, this happens when a getter returns a direct reference to a
mutable field within the object, or a setter just assigns a mutable argument to its field.

Recommendation
There are three ways of addressing this problem:

® Using immutable objects : The fields store objects that are immutable, which means that once
constructed their value can never be changed. Examples from the standard library are Stri ng, I nt eger or
Fl oat . Although such an object may be aliased, or shared between several contexts, there can be no
unexpected changes to the internal state of the object because it cannot be modified.

® Creating aread-only view : The java. util.Coll ections. unnodi fi abl e* methods can be used to create a
read-only view of a collection without copying it. This tends to give better performance than creating copies
of objects. Note that this technique is not suitable for every situation, because any changes to the
underlying collection will spread to affect the view. This can lead to unexpected results, and is a particular
danger when writing multi-threaded code.

® Making defensive copies : Each setter (or constructor) makes a copy or clone of the incoming parameter.
In this way, it constructs an instance known only internally, and no matter what happens with the object
that was passed in, the state stays consistent. Conversely, each getter for a field must also construct a
copy of the field's value to return.

Example

In the following example, the private field i t ems is returned directly by the getter get I t ems. Thus, a caller obtains a
reference to internal object state and can manipulate the collection of items in the cart. In the example, each of
the carts is emptied when count | tens is called.

1 public class Cart {

2 private Set<lten® itens;

3 /1

4 /1 AVO D: Exposes representation

5 public Set<ltem> getltens() {

6 return itens;

7 }

8 1}

9

10 int countltens(Set<Cart> carts) {

11 int result = 0;

12 for (Cart cart : carts) {

13 Set<ltenr itens = cart.getltens();
14 result += itens.size();

15 items.clear(); // AVO D: Changes internal representation
16 }

17 return result;

18 }

The solution is for get I t ens to return a copy of the actual field, for example return new HashSet <l ten»(itens); .

JPL Java Coding Standard v1.0 March 31, 2014. Page 163

Important rules

References

® J. Bloch, Effective Java (second edition), Iltems 15 and 39. Addison-Wesley, 2008.
® Java 7 APl Documentation: Collections.

JPL Java Coding Standard v1.0 March 31, 2014. Page 164

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

Important rules

Equality (1)

® Avoid unintentionally overloading '‘Comparable.compareTo'
® Redefine 'equals’ in subclasses that have additional fields

JPL Java Coding Standard v1.0 March 31, 2014. Page 165

Important rules

Avoid unintentionally overloading 'Comparable.compareTo’

...

Category: Important > Equality (1)

Description: Defining ‘Comparable.compareTo', where the parameter of ‘compareTo' is not of the
appropriate type, overloads ‘compareTo' instead of overriding it.

Classes that implement Conpar abl e<T> and define a conpar eTo method whose parameter type is not T overload
the conpar eTo method instead of overriding it. This may not be intended.

Example

In the following example, the call to conpar eTo on line 17 calls the method defined in class super, instead of the
method defined in class sub, because the type of a and b is Super. This may not be the method that the
programmer intended.

1 public class Covariant ConpareTo {

2 static class Super inplenents Conparabl e<Super> {
3 public int conpareTo(Super rhs) {

4 return -1,

5 }

6 }

7

8 static class Sub extends Super {

9 public int conpareTo(Sub rhs) { // Definition of conpareTo uses a different paraneter type
10 return O;

11 }

12 }

13

14 public static void main(String[] args) {

15 Super a = new Sub();

16 Super b = new Sub();

17 System out . println(a. conpareTo(b));

18 }

19 }

Recommendation
To override the Conpar abl e<T>. conpar eTo method, the parameter of conpar eTo must have type T.

In the example above, this means that the type of the parameter of sub. conpar eTo should be changed to Super .

References

* J. Bloch, Effective Java (second edition), ltem 12. Addison-Wesley, 2008.
® The Java Language Specification: Overriding (by Instance Methods), Overloading.
® The Java Tutorials: Overriding and Hiding Methods.

JPL Java Coding Standard v1.0 March 31, 2014. Page 166

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.8.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9
http://docs.oracle.com/javase/tutorial/java/IandI/override.html

Important rules

Redefine 'equals' in subclasses that have additional fields

...

Category: Important > Equality (1)

Description: If a class overrides 'Object.equals’, and a subclass defines additional fields to those it inherits
but does not re-define 'equals’, the results of 'equals’ may be wrong. :

If a class overrides the default implementation of equality defined by the j ect . equal s method, and a subclass of
that class declares additional fields to the ones that it inherits, the results of equal s may be wrong, unless that
subclass also redefines equal s.

Recommendation

See if the subclass should provide its own implementation of equal s to take into account the additional fields that
it declares.

Example

In the following example, rectangles r1 and r 2 are calculated to be equal, even though they have different
dimensions. This is because the class Rect angl e does not override Squar e. equal s, SO it uses a test for equality
that is only applicable to squares, not rectangles. (Note that, in practice, the example should also include an
implementation of hashCode.)

1 public class DefineEqual s\WhenAddi ngFi el ds {

2 static class Square {

3 protected int width = 0;

4 public Square(int width) {

5 this.width = wdth;

6 }

7 @verride

8 publ i c bool ean equal s(Cbject thatOQ { // This nethod works only for squares.
9 if(thatO!= null && getd ass() == thatO getdass()) {
10 Square that = (Square)thatOQ

11 return width == that.width;

12 }

13 return fal se;

14 }

15 }

16

17 static class Rectangl e extends Square {

18 private int height = 0;

19 public Rectangle(int width, int height) {

20 super (w dt h) ;

21 this. hei ght = height;

22 }

23 }

24

25 public static void nain(String[] args) {

26 Rectangle r1 = new Rectangl e(4, 3);

27 Rectangl e r2 = new Rectangl e(4, 5);

28 Systemout.printin(rl.equals(r2)); // CQutputs 'true'
29 }

30 }

To get the correct result, you must override Squar e. equal s in class Rect angl e.

References

® Java API Documentation: Object.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 167

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

Important rules

Exceptions (1)

® Avoid dereferencing a variable that may be 'null’
® Avoid unreachable 'catch’ clauses
® Do not drop an exception

JPL Java Coding Standard v1.0 March 31, 2014. Page 168

Important rules

Avoid dereferencing a variable that may be 'null’

...

Category: Important > Exceptions (1)

Description: Dereferencing a variable whose value may be 'null' may cause a 'NullPointerException'.

...

If a variable is dereferenced, and the variable may have a nul I value on some execution paths leading to the
dereferencing, the dereferencing may result in a Nul | Poi nt er Except i on.

Recommendation

Ensure that the variable does not have a nul | value when it is dereferenced.
References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 169

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid unreachable 'catch' clauses

...

Category: Important > Exceptions (1)

Description: An unreachable ‘catch’ clause may indicate a mistake in exception handling or may be
unnecessary.

An unreachable cat ch clause may indicate a logical mistake in the exception handling code or may simply be
unnecessary.

Although certain unreachable cat ch clauses cause a compiler error, there are also unreachable cat ch clauses
that do not cause a compiler error. A cat ch clause cis considered reachable by the compiler if both of the
following conditions are true:

® A checked exception that is thrown in the t ry block is assignable to the parameter of C.
® There is no previous cat ch clause whose parameter type is equal to, or a supertype of, the parameter type
of C.

However, a cat ch clause that is considered reachable by the compiler can be unreachable if both of the following
conditions are true:

® The cat ch clause's parameter type E does not include any unchecked exceptions.
® All exceptions that are thrown in the try block whose type is a (strict) subtype of £ are already handled by
previous cat ch clauses.

Recommendation

Ensure that unreachable cat ch clauses are removed or that further corrections are made to make them
reachable.

Note that if a t ry- cat ch statement contains multiple cat ch clauses, and an exception that is thrown in the try
block matches more than one of the cat ch clauses, only the first matching clause is executed.

Example

In the following example, the second cat ch clause is unreachable, and can be removed.

1 FilelnputStreamfis = null;

2 try {

3 fis = new Fil el nput Stream(new Fil e("may_not_exist.txt"));
4 /1 read frominput stream

5 } catch (FileNot FoundException e) {

6 /1 ask the user and try again

7 } catch (I OException e) {

8 /'l nmore serious, abort

9 } finally {

10 if (fist=null) { try { fis.close(); } catch (IOException e) { /*ignore*/ } }
11}

References

® The Java Language Specification: Execution of try-catch, Unreachable Statements.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 170

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.20.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.21
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Do not drop an exception

...

Category: Important > Exceptions (1)

Description: Dropping an exception may allow an unusual program state to continue without recovery.

You should not drop an exception, because it indicates that an unusual program state has been reached. This
usually requires corrective actions to be performed to recover from the exceptional state and try to resume
normal program operation.

Recommendation
You should do one of the following:

® Catch and handle the exception.
® Throw the exception to the outermost level of nesting.

Note that usually you should catch and handle a checked exception, but you can throw an unchecked exception
to the outermost level.

There is occasionally a valid reason for ignoring an exception. In such cases, you should document the reason to
improve the readability of the code. Alternatively, you can implement a static method with an empty body to
handle these exceptions. Instead of dropping the exception altogether, you can then pass it to the static method
with a string explaining the reason for ignoring it.

Examples

The following example shows a dropped exception.

1 // Dropped exception, with no infornation on whether
2 |l the exception is expected or not

3 synchroni zed voi d waitlfAutoSyncSchedul ed() {

4 try {

5 whi | e (isAutoSyncSchedul ed) {

6 this.wait(1000);

7 }

8 } catch (InterruptedException e) {

9
1

}
0}

The following example shows how you can improve code readability by defining a new utility method.

1 // "ignore' nethod. This nethod does nothing, but can be called
2 |/ to docurment the reason why the exception can be ignored.

3 public static void ignore(Throwable e, String nessage) {
4
5

}
The following example shows the exception being passed to i gnor e with a comment.

1 // Exception is passed to 'ignore' nmethod with a conment
2 synchroni zed voi d waitlfAutoSyncSchedul ed() {
3 try {

4 whi | e (i sAut oSyncSchedul ed) {

5 this. wait(1000);

6 }

7 } catch (InterruptedException e) {

8 Exceptions.ignore(e, "Expected exception. The file cannot be synchronized yet.");
9 }

10 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 171

Important rules

References

® J. Bloch, Effective Java (second edition), ltem 65. Addison-Wesley, 2008.
® The Java Tutorials: Unchecked Exceptions - The Controversy.

JPL Java Coding Standard v1.0 March 31, 2014. Page 172

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Important rules

Expressions (1)

® Avoid assignments in Boolean expressions
® Avoid very complex conditions

JPL Java Coding Standard v1.0 March 31, 2014. Page 173

Important rules

Avoid assignments in Boolean expressions

...

Category: Important > Expressions (1)

Description: Assignments in Boolean conditions can be confused with equality tests and make the
condition more difficult to understand.

The assignment operator (=) can easily be confused with the equality operator (==), and can make a Boolean
expression more difficult to understand. Consequently, assignments in Boolean expressions should be avoided.

Some useful idioms are an exception to this rule, such as checking that some bytes have been read from an
input-stream, as shown in the readConf i gur ati on method in the example below. More precisely, an assignment is
allowed in a Boolean expression if the result of the assignment is compared to another value.

Recommendation

Consider structuring the condition so that the side-effects are moved outside of the condition, possibly splitting
the condition into several separate tests.

Example

In the following example, consider the rather confusing assignment to restart in the noti fy method. The
assignment should be performed outside of the condition instead.

1 public class ScreenView

2 A

3 private static int BUF_SIZE = 1024,

4 private Screen screen;

5

6 public void notify(Change change) {

7 bool ean restart = fal se;

8 i f (change. equal s(Change. MOVE)

9 || v.equal s(Change. REPAI NT)

10 || (restart = v.equal s(Change. RESTART)) // AVO D: Confusing assignnent in condition
11 || v.equal s(Change. FLI P))

12 {

13 if (restart)

14 W ndowanager . restart();

15 screen. update();

16 }

17 }

18

19 /1

20

21 public void readConfiguration(lnputStreamconfig) {
22 byte[] buf = new byte[BUF_SI ZE] ;

23 int read;

24 while ((read = config.read(buf)) > 0) { // OK Assignnment whose result is conpared to
25 /1 anot her val ue
26 /1

27

28 /1

29 }

30 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 15.21 Equality Operators, 15.26 Assignment Operators.

JPL Java Coding Standard v1.0 March 31, 2014. Page 174

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.21
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26

Important rules

Avoid very complex conditions

...

Category: Important > Expressions (1)

Description: Very complex conditions are difficult to read and may include defects.

...

In general, very complex conditions are difficult to write and read, and increase the chance of defects.

Recommendation

Firstly, a condition can often be simplified by changing other parts of the code to initialize variables more
consistently. For example, is there a semantic difference between i d being nul I and having zero-length? If not,
choosing one sentinel value and using it consistently simplifies most uses of that variable.

Secondly, extracting part of a condition into a Boolean-valued method can simplify the condition and also allow
code reuse, with all its benefits.

Thirdly, assigning each subcondition of the condition to a local variable, and then using the variables in the
condition instead can simplify the condition.

Example

The following example shows a complex condition found in a real program used by millions of people. The
condition is so confusing that even the programmer who wrote it is not sure if he got it right (see the Topo
comment).

1 public class Dialog

2 {

3 /1

4

5 private void validate() {

6 /1 TODO check that this covers all cases

7 if ((id!=null & id.length() == 0) ||

8 ((partner == null || partner.id == -1) &&

9 ((option == Options. SHORT && paraneter.length() == 0) ||
10 (option == Options. LONG && paraneter.length() < 8))))
11 {

12 di sabl eOKBut ton();

13 } else {

14 enabl eOKBut t on() ;

15 }

16 }

17

18 /1

19 }

The condition can be simplified by extracting parts of the condition into Boolean-valued methods. These methods
are then used in the condition.

public class Dialog
{
/1

1
2
3
4
5 private void validate() {
6 if(idlsEnpty() || (noPartnerld() && paraneterLengthlnvalid())){ // GOCD: Condition is sinpler
7 di sabl eOKButt on();

8 } else {

9 enabl eOKBut t on() ;

10 }
11 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 175

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

Important rules

private bool ean idlsEnpty(){
return id !=null & id.length() == 0;

}

private bool ean noPartnerld(){
return partner == null || partner.id == -1;

}

private bool ean paraneterLengt hl nval i d(){
return (option == Options. SHORT && paraneter.length() == 0) ||
(option == Options. LONG & paraneter.length() < 8);

11

References

® R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.G28. Prentice Hall, 2008.
® S. McConnell, Code Complete: A Practical Handbook of Software Construction. Microsoft Press, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 176

Important rules

Extensibility (1)

® Avoid writing to a static field from an instance method

JPL Java Coding Standard v1.0 March 31, 2014. Page 177

Important rules

Avoid writing to a static field from an instance method

...

Category: Important > Extensibility (1)

Description: Writing to a static field from an instance method is prone to race conditions unless you use
synchronization. In addition, it makes it difficult to keep the static state consistent and affects code
readability.

A static field represents state shared between all instances of a particular class. Typically, static methods are
provided to manipulate this static state, and it is bad practice to modify the static state of a class from an instance
method (or from a constructor).

There are several reasons why this is bad practice. It can be very difficult to keep the static state consistent when
there are multiple instances through which it could be modified. Such modifications represent a readability issue:

most programmers would expect a static method to affect static state, and an instance method to affect instance

state.

Recommendation
If the field should be an instance field, ensure that it does not have a st ati ¢ modifier.

If the field does have to be static, evaluate the assumptions in the code. Does the field really have to be modified
directly in an instance method? It might be better to access the field from within static methods, so that any
concerns about synchronization can be addressed without numerous synchronization statements in the code.
Perhaps the field modification is part of the static initialization of the class, and should be moved to a static
initializer or method.

Example

In the following example, a static field, cust onmer s, is written to by an instance method, i ni ti al i ze. It is entirely
reasonable for another developer to assume that an instance method called i ni ti al i ze should be called on each
new instance, and that is what the code in Depart nent does. Unfortunately, the static field is shared between all
instances of cust omer, and so each time i ni ti al i ze is called, the old state is lost.

1 public class Customner {

2 private static List<Custoner> custoners;

3 public void initialize() {

4 /1 AVO D: Static field is witten to by instance nethod.
5 custonmers = new Arrayli st <Custoner>();
6 register();

7 }

8 public static void add(Custonmer c) {

9 cust oners. add(c);

10 }

11}

12

13 //

14 public class Department {

15 public void addCustoner(String nane) {
16 Customer ¢ = new Custoner(n);

17 /1 The followi ng call overwites the Iist of custoners
18 /1 stored in 'Custoner' (see above).
19 c.initialize();

20 Cust oner. add(c);

21 }

22}

The solution is to extract the static initialization of cust omer s to a static method, where it will happen exactly once.

JPL Java Coding Standard v1.0 March 31, 2014. Page 178

Important rules

References

® Java Language Specification: 8.3.1.1 static Fields.

JPL Java Coding Standard v1.0 March 31, 2014. Page 179

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1.1

Important rules

Incomplete Code (1)

® Do not include empty ‘finalize' methods
® Ensure that TODO' or 'FIXME' comments are resolved
® Ensure that 'ZipOutputStream.write' is called when writing a ZIP file

JPL Java Coding Standard v1.0 March 31, 2014. Page 180

Important rules

Do not include empty ‘finalize' methods

...

Category: Important > Incomplete Code (1)

Description: An empty 'finalize' method is useless and prevents its superclass's ‘finalize' method (if any)
from being called.

An empty final i ze method is useless and may prevent finalization from working properly. This is because, unlike
a constructor, a finalizer does not implicitly call the finalizer of the superclass. Thus, an empty finalizer prevents
any finalization logic that is defined in any of its superclasses from being executed.

Recommendation

Do not include an empty fi nal i ze method.

Example

In the following example, the empty fi nal i ze method in class Ext endedLog prevents the final i ze method in class
Log from being called. The result is that the log file is not closed. To fix this, remove the empty fi nal i ze method.

1 class ExtendedLog extends Log
2 {

3 /1

4

5 protected void finalize() {
6 /1 BAD: This enpty 'finalize stops 'super.finalize' from being executed.
7 }

8 }

9

10 class Log inplenents d oseabl e
11 {

12 /1

13

14 public void close() {

15 /1

16 }

17

18 protected void finalize() {
19 close();

20 }

21}

References

® Java Language Specification: 12.6 Finalization of Class Instances.

JPL Java Coding Standard v1.0 March 31, 2014. Page 181

http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.6

Important rules

Ensure that 'TODO' or 'FIXME' comments are resolved

...

Category: Important > Incomplete Code (1)

Description: A comment that contains "'TODO' or 'FIXME' may indicate code that is incomplete or broken,
or highlight an ambiguity in the software's specification.

A comment that includes the word ToDo or FI XMVe often marks a part of the code that is incomplete or broken, or
highlights ambiguities in the software's specification.

For example, this list of comments is typical of those found in real programs:

TODO nove this code somewhere el se

FI XME: handl e this case

FI XME: find a better solution to this workaround
TODO test this

Recommendation

It is very important that ToDo or FI XME comments are not just removed from the code. Each of them must be
addressed in some way.

Simpler comments can usually be immediately addressed by fixing the code, adding a test, doing some
refactoring, or clarifying the intended behavior of a feature.

In contrast, larger issues may require discussion, and a significant amount of work to address. In these cases it is
a good idea to move the comment to an issue-tracking system, so that the issue can be tracked and prioritized
relative to other defects and feature requests.

References

® Approxion: TODO or not TODO.
® Wikipedia: Comment tags, Issue tracking system.

JPL Java Coding Standard v1.0 March 31, 2014. Page 182

http://www.approxion.com/?p=39
http://en.wikipedia.org/wiki/Comment_%28computer_programming%29#Tags
http://en.wikipedia.org/wiki/Issue_tracking_system

Important rules

Ensure that "ZipOutputStream.write' is called when writing a ZIP file

...

Category: Important > Incomplete Code (1)

Description: Omitting a call to 'ZipOutputStream.write' when writing a ZIP file to an output stream means
that an empty ZIP file entry is written.

The zi paut put St reamclass is used to write ZIP files to a file or other stream. A ZIP file consists of a number of
entries. Usually each entry corresponds to a file in the directory structure being zipped. There is a method on

Zi pQut put St r eamthat is slightly confusingly named put Next Ent ry. Despite its name, it does not write a whole entry.
Instead, it writes the metadata for an entry. The content for that entry is then written using the wri t e method.
Finally the entry is closed using cl oseEntry.

Therefore, if you call put Next Entry and cl oseEnt ry but omit the call to wri t e, an empty ZIP file entry is written to
the output stream.

Recommendation

Ensure that you include a call to zi pout put Stream wri te.

Example

In the following example, the ar chi ve method calls put Next Ent ry and cl oseEnt ry but the call to wri te is left out.

1 class Archive inplenments C oseabl e

2 A

3 private Zi pCQutput Stream zi pStream

4

5 public Archive(File zip) throws | OException {
6 Qut put St ream stream = new Fi | eQut put Strean(zi p);
7 stream = new Buf f er edQut put Strean{streanj;
8 zi pStream = new Zi pQut put St rean(strean);

9 }

10

11 public void archive(String nane, byte[] content) throws |OException {
12 Zi pEntry entry = new Zi pEntry(nane);

13 zi pStream put Next Entry(entry);

14 /1 Mssing call to "wite'

15 zi pStream cl oseEntry();

16 }

17

18 public void close() throws |OException {

19 zi pStream cl ose();

20 }

21}

References

® Java 2 Platform Standard Edition 5.0, API Specification: ZipOutputStream.

JPL Java Coding Standard v1.0 March 31, 2014. Page 183

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/zip/ZipOutputStream.html

Important rules

Inefficient Code

Avoid calling 'Collection.toArray' with a zero-length array argument
Avoid calling a boxed type's constructor directly

Avoid checking a string for equality with an empty string

Avoid iterating through a map using its key set

Avoid non-static nested classes unless necessary

Avoid performing string concatenation in a loop

Avoid using the 'String(String)' constructor

JPL Java Coding Standard v1.0 March 31, 2014. Page 184

Important rules

Avoid calling 'Collection.toArray' with a zero-length array argument

...

Category: Important > Inefficient Code

Description: Calling 'Collection.toArray' with a zero-length array argument is inefficient.

...

Thejava. util.Collection interface provides a t oArray method that can be used to convert a collection of objects
into an array of a particular type. This method takes an array as an argument, which is used for two purposes.
Firstly, it determines the type of the returned array. Secondly, if it is big enough to hold all values in the collection,
it is filled with those values and returned; otherwise, a new array of sufficient size and the appropriate type is
allocated and filled.

It is common to pass a fresh zero-length array to t oArray, simply because it is easy to construct one.
Unfortunately, this allocation is wasteful, because the array clearly is not big enough to hold the elements of the
collection. This can cause considerable garbage collector churn, impacting performance.

Recommendation

It is always best to call t oArray with a new array allocated with a sufficient size to hold the contents of the
collection. Usually, this involves calling the collection’s si ze method and allocating an array with that many
elements. While it may seem odd that adding a call to si ze improves performance, if you do not pass a large
enough array, the t oArray method makes this call automatically. Calling si ze explicitly and then calling t oArr ay
with a large enough array avoids the possible creation of two arrays (one too small and consequently unused).

Example

In the following example, the first version of class conpany uses an inefficient call to t oArray by passing a
zero-length array. The second version uses a more efficient call that passes an array that is big enough to store
the customer list.

1 class Conpany {

2 private List<Custoner> custoners = ...;

3

4 public Custoner[] getCustonerArray() {

5 /1 AVO D: Inefficient call to "toArray’ with zero-length argunent
6 return custoners.toArray(new Custoner[0]);

7 }

8 1}

9

10 cl ass Conpany {

11 private List<Custoner> custonmers = ...;

12

13 public Custoner[] getCustonerArray() {

14 /1 GOOD: More efficient call to '"toArray' with argunent that is big enough to store the |ist
15 return custoners.toArray(new Custoner[custoners.size()]);

16 }

17 '}

References

® Java Platform, Standard Edition 6, API Specification: toArray.

JPL Java Coding Standard v1.0 March 31, 2014. Page 185

Important rules

Avoid calling a boxed type's constructor directly

...

Category: Important > Inefficient Code

Description: Calling the constructor of a boxed type is inefficient.

...

Primitive values (for example i nt, f1 oat, bool ean) all have corresponding reference types known as boxed types
(for example 1 nt eger, Fl oat, Bool ean). These boxed types can be used when an actual object is required. While
they all provide constructors that take a primitive value of the appropriate type, it is usually considered bad
practice to call those constructors directly.

Each boxed type provides a static val ued method that takes an argument of the appropriate primitive type and
returns an object representing it. The advantage of calling val uecr over calling a constructor is that it allows for
some caching of instances. By reusing these cached instances instead of constructing new heap objects all the
time, a significant amount of garbage collector effort can be saved.

Recommendation
In almost all circumstances, a call of, for example, I nt eger . val uedf (42) can be used instead of new I nt eger (42) .

Note that sometimes you can rely on Java's autoboxing feature, which implicitly calls val uec . For details, see the
example.

Example

The following example shows the three ways of creating a new integer. In the autoboxing example, the zero is
autoboxed to an I nt eger because the constructor Account takes an argument of this type.

1 public class Account {

2 private |nteger bal ance;

3 public Account (I nteger startingBal ance) {

4 thi s. bal ance = startingBal ance;

5 }

6 }

7

8 public class BankManager {

9 public voi d openAccount (Customer c) {

10 .

11 /1 AVO D:. Inefficient primtive constructor
12 account s. add(new Account (new I nteger(0)));
13 /] GOOD: Use 'val ue

14 account s. add(new Account (I nteger.val ued(0)));
15 // GOOD: Rely on autoboxing

16 account s. add(new Account (0));

17 }

18 }

References

® J. Bloch, Effective Java (second edition), Iltems 1 and 5. Addison-Wesley, 2008.
* Java Platform, Standard Edition 6, APl Documentation: Boolean.valueOf(), Byte.valueOf(), Short.valueOf()
, Integer.valueOf(), Long.valueOf(), Float.valueOf(), Double.valueOf().

JPL Java Coding Standard v1.0 March 31, 2014. Page 186

http://docs.oracle.com/javase/6/docs/api/java/lang/Boolean.html#valueOf%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Byte.html#valueOf%28byte%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Short.html#valueOf%28short%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html#valueOf%28int%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html#valueOf%28long%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Float.html#valueOf%28float%29
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html#valueOf%28double%29

Important rules

Avoid checking a string for equality with an empty string

...

Category: Important > Inefficient Code

Description: Checking a string for equality with an empty string is inefficient.

...

When checking whether a string s is empty, perhaps the most obvious solution is to write something like

s. equal s("") (or "".equal s(s)). However, this actually carries a fairly significant overhead, because

String. equal s performs a number of type tests and conversions before starting to compare the content of the
strings.

Recommendation

The preferred way of checking whether a string s is empty is to check if its length is equal to zero. Thus, the
condition is s. 1 engt h() == 0. The I engt h method is implemented as a simple field access, and so should be
noticeably faster than calling equal s.

Note that in Java 6 and later, the string class has an i senpty method that checks whether a string is empty. If the
codebase does not need to support Java 5, it may be better to use that method instead.

Example

In the following example, class I neffi ci ent DBA i ent USES equal s to test whether the strings user and pware
empty. Note that the test . equal s(pw) guards against Nul | Poi nt er Except i on, but the test user. equal s("")
throws a Nul | Poi nt er Excepti on if user iSnul | .

In contrast, the class Effici ent DBA i ent USES | engt h instead of equal s. The class preserves the behavior of
I nefficientDBC i ent by guarding pw. 1 engt h() == 0 but not user.1ength() == 0 with an explicit test for nul I .
Whether or not this guard is desirable depends on the intended behavior of the program.

1 // Inefficient version
2 class InefficientDBCient {

3 public void connect(String user, String pw {
4 if (user.equals("") || "".equal s(pw))

5 t hrow new Runti neException();

6

7 }

8 }

9

10 // More efficient version

11 class EfficientDBCient {

12 public void connect(String user, String pw {

13 if (user.length() == 0 || (pw!= null & pw. length() == 0))
14 throw new Runti meException();

15

16 }

17 '}

References

® Java Platform, Standard Edition 6, API Specification: String.length(), String.equals().

JPL Java Coding Standard v1.0 March 31, 2014. Page 187

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#length%28%29
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#equals%28java.lang.Object%29

Important rules

Avoid iterating through a map using its key set

...

Category: Important > Inefficient Code

Description: Iterating through the values of a map using the key set is inefficient.

...

Java's Collections Framework provides several different ways of iterating the contents of a map. You can retrieve
the set of keys, the collection of values, or the set of "entries” (which are, in effect, key/value pairs).

The choice of iterator can affect performance. For example, it is considered bad practice to iterate the key set of a
map if the body of the loop performs a map lookup on each retrieved key anyway.

Recommendation

Evaluate the requirements of the loop body. If it does not actually need the key apart from looking it up in the
map, iterate the map's values (obtained by a call to val ues) instead. If the loop genuinely needs both key and
value for each mapping in the map, iterate the entry set (obtained by a call to ent rySet) and retrieve the key and
value from each entry. This saves a more expensive map lookup each time.

Example

In the following example, the first version of the method fi ndi d iterates the map peopl e using the key set. This is
inefficient because the body of the loop needs to access the value for each key. In contrast, the second version
iterates the map using the entry set because the loop body needs both the key and the value for each mapping.

1 // AVOD: Iterate the map using the key set.

2 class AddressBook {

3 private Map<String, Person> people = ...;

4 public String findld(String first, String last) {
5 for (String id : people.keySet()) {

6 Person p = people.get(id);

7 if (first.equal s(p.firstNane()) && | ast.equal s(p.lastNanme()))
8 return id,

9 }

10 return null;

11 }

12}

13

14 // GOCOD: lterate the nap using the entry set.
15 cl ass AddressBook {

16 private Map<String, Person> people = ...;

17 public String findld(String first, String last) {

18 for (Entry<String, Person> entry: people.entrySet()) {
19 Person p = entry. get Val ue();

20 if (first.equal s(p.firstNane()) && |ast.equal s(p.lastNanme()))
21 return entry. getKey();

22 }

23 return null;

24 }

25 '}

References

® Java Platform, Standard Edition 6, API Specification: Map.entrySet().

JPL Java Coding Standard v1.0 March 31, 2014. Page 188

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html#entrySet%28%29

Important rules

Avoid non-static nested classes unless necessary

...

Category: Important > Inefficient Code

Description: A non-static nested class keeps a reference to the enclosing object, which makes the nested
class bigger and may cause a memory leak. :

Nested classes allow logical grouping of related concerns, increasing encapsulation and readability. However,
there is a potential disadvantage when using them that you should be aware of.

Any non-static nested class implicitly holds onto its "enclosing instance”. This means that:

® The nested class has an implicitly defined field. The field holds a reference to the instance of the enclosing
class that constructed the nested class.

® The nested class's constructors have an implicit parameter. The parameter is used for passing in the
instance of the enclosing class. A reference to the instance is then stored in the field mentioned above.

Often, this is useful and necessary, because non-static nested class instances have access to instance state on
their enclosing classes. However, if this instance state is not needed by the nested class, this makes nested class
instances larger than necessary, and hidden references to the enclosing classes are often the source of subtle
memory leaks.

Recommendation

When a nested class does not need the enclosing instance, it is better to declare the nested class stati c,
avoiding the implicit field. As a result, instances of the nested class become smaller, and hidden references to the
enclosing class are made explicit.

If a reference to the enclosing class instance is required during construction of the nested class instance (but not
subsequently), the constructor of the nested class should be refactored so that it is explicitly given a reference to
the enclosing instance.

References

* J. Bloch, Effective Java (second edition), ltem 22. Addison-Wesley, 2008.
® Java Language Specification: 8.1.3. Inner Classes and Enclosing Instances.
® The Java Tutorials: Nested Classes.

JPL Java Coding Standard v1.0 March 31, 2014. Page 189

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.3
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Important rules

Avoid performing string concatenation in aloop

...

Category: Important > Inefficient Code

Description: Performing string concatenation in a loop that iterates many times may affect performance.

...

When string concatenation is performed using the "+" operator, the compiler translates this operation to a suitable
manipulation, possibly constructing several intermediate strings. In general, because strings are immutable, at
least one new string has to be constructed to hold the result.

Building up a string one piece at a time in a loop requires a new string on every iteration, repeatedly copying
longer and longer prefixes to fresh string objects. As a result, performance can be severely degraded.

Recommendation

Whenever a string is constructed using a loop that iterates more than just a few times, it is usually better to create
a stringBuf fer Or StringBuil der object and append to that. Because such buffers are based on mutable
character arrays, which do not require a new string to be created for each concatenation, they can reduce the
cost of repeatedly growing the string.

To choose between stringBuf fer and StringBui | der, check if the new buffer object can possibly be accessed by
several different threads while in use. If multi-thread safety is required, use a St ri ngBuf f er. For purely local string
buffers, you can avoid the overhead of synchronization by using a Stri ngBui | der .

Example

The following example shows a simple test that measures the time taken to construct a string. It constructs the
same string of 65,536 binary digits, character-by-character, first by repeatedly appending to a string, and then by
using a stringBui | der. The second method is three orders of magnitude faster.

1 public class ConcatenationlnLoops {

2 public static void main(String[] args) {

3 Random r = new Randon{ 123);

4 long start = SystemcurrentTineMIlis();

5 String s = "";

6 for (int i =0; i < 65536; i++)

7 s += r.nextInt(2);

8 Systemout.println(SystemcurrentTimeMIlis() - start); // This prints roughly 4500.
9

10 r = new Randon{123);

11 start = SystemcurrentTimeM I 1is();

12 StringBuilder sb = new StringBuilder();

13 for (int i =0; i < 65536; i++)

14 sb. append(r.nextint(2));

15 s = sbh.toString();

16 Systemout.println(SystemcurrentTimeMIlis() - start); // This prints 5.
17 }

18 }

References

® J. Bloch, Effective Java (second edition), ltem 51. Addison-Wesley, 2008.
® Java Platform, Standard Edition 6, API Specification: StringBuffer, StringBuilder.

JPL Java Coding Standard v1.0 March 31, 2014. Page 190

http://docs.oracle.com/javase/6/docs/api/java/lang/StringBuffer.html
http://docs.oracle.com/javase/6/docs/api/java/lang/StringBuilder.html

Important rules

Avoid using the 'String(String)' constructor

...

Category: Important > Inefficient Code

Description: Using the 'String(String)' constructor is less memory efficient than using the constructor
argument directly.

The string class is immutable, which means that there is no way to change the string that it represents.
Consequently, there is rarely a need to copy a Stri ng object or construct a new instance based on an existing
string, for example by writing something like String hell o = new String("hello"). Furthermore, this practice is
not memory efficient.

Recommendation

The copied string is functionally indistinguishable from the argument that was passed into the stri ng constructor,
S0 you can simply omit the constructor call and use the argument passed into it directly. Unless an explicit copy
of the argument string is needed, this is a safe transformation.

Example

The following example shows three cases of copying a string using the st ri ng constructor, which is inefficient. In
each case, simply removing the constructor call new Stri ng and leaving the argument results in better code and
less memory churn.

1 public void sayHello(String world) {

2 /1 AVO D: Inefficient '"String" constructor
3 String message = new String("hello ");

4

5 /1 AVO D:. Inefficient "String' constructor
6 message = new String(message + world);

7

8 /1 AVO D:. Inefficient '"String' constructor
9 System out. println(new String(nessage));
10 }

References

® J. Bloch, Effective Java (second edition), Item 5. Addison-Wesley, 2008.
® Java Platform, Standard Edition 6, API Specification: String(String).

JPL Java Coding Standard v1.0 March 31, 2014. Page 191

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#String%28java.lang.String%29

Important rules

Java objects (2)

® Cloning (1)
® Garbage collection (1)
® Serialization (1)

JPL Java Coding Standard v1.0 March 31, 2014. Page 192

Important rules

Cloning (1)

® Ensure that a class that implements 'Cloneable' overrides ‘clone'

JPL Java Coding Standard v1.0 March 31, 2014. Page 193

Important rules

Ensure that a class that implements 'Cloneable' overrides ‘clone’

...

Category: Important > Java objects (2) > Cloning (1)

Description: A class that implements 'Cloneable’ but does not override the 'clone' method will have
undesired behavior.

A class that implements d oneabl e should override j ect . cl one. For non-trivial objects, the d oneabl e contract
requires a deep copy of the object's internal state. A class that does not have a cl one method indicates that the
class is breaking the contract and will have undesired behavior.

The Java API documentation states that, for an object x, the general intent of the cl one method is for it to satisfy
the following three properties:

® x.clone() != x (the cloned object is a different object instance)
® x.clone().getC ass() == x.getd ass() (the cloned object is the same type as the source object)
® x.clone().equal s(x) (the cloned object has the same ‘contents' as the source object)

For the cloned object to be of the same type as the source object, non-final classes must call super. cl one and
that call must eventually reach oj ect . cl one, which creates an instance of the right type. If it were to create a new
object using a constructor, a subclass that does not implement the cl one method returns an object of the wrong
type. In addition, all of the class's supertypes that also override cl one must call super. cl one. Otherwise, it never
reaches j ect . cl one and creates an object of the incorrect type.

However, as oj ect . cl one only does a shallow copy of the fields of an object, any c oneabl e objects that have a
"deep structure"” (for example, objects that use an array or Col | ecti on) must take the clone that results from the
call to super. cl one and assign explicitly created copies of the structure to the clone's fields. This means that the
cloned instance does not share its internal state with the source object. If it did share its internal state, any
changes made in the cloned object would also affect the internal state of the source object, probably causing
unintended behavior.

One added complication is that cl one cannot modify values in final fields, which would be already set by the call
to super. cl one. Some fields must be made non-final to correctly implement the cl one method.

Recommendation

The necessity of creating a deep copy of an object's internal state means that, for most objects, cl one must be
overridden to satisfy the d oneabl e contract. Implement a cl one method that properly creates the internal state of
the cloned object.

Notable exceptions to this recommendation are:

® Classes that contain only primitive types (which will be properly cloned by j ect . cl one as long as its
C oneabl e supertypes all call super. cl one).
® Subclasses of d oneabl e classes that do not introduce new state.

Example

In the following example, w ongSt ack does not implement cl one. This means that when ws1cl one is cloned from
ws1, the default cl one implementation is used. This results in operations on the wsicl one stack affecting the ws1
stack.

1 abstract class AbstractStack inplenents C oneable {
2 public Abstract Stack clone() {

3 try {

4 return (Abstract Stack) super.clone();

5 } catch (d oneNot SupportedException e) {

JPL Java Coding Standard v1.0 March 31, 2014. Page 194

© 0o ~NO®

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

throw new AssertionError("Shoul d not happen");

cl ass WongStack extends Abstract Stack {

}

/1 W ongSt ack cloned = (WongStack) super.clone();

/1 cloned. el enents = elenents; // Both

/1 return cl oned;

/1 }

public class M ssingMet hodd one {

public static void main(String[] args) {
WongStack wsl = new WongStack(); I
wsl. push(1); /1
wsl. push(2); I

}

private static final int MAX_STACK = 10;
int[] elements = new int[MAX_STACK] ;
int top = -1;

voi d push(int newnt) {

el enent s[++t op] = new nt;
}
int pop() {

return el ements[top--];

}

Important rules

/1 BAD: No 'clone' nmethod to create a copy of the el enents.
/1 Therefore, the default 'clone' inplenentation (shallow copy) is used, which

/1 is equivalent to:
/1
/1 public WongStack clone() {

WongSt ack wslclone = (WongStack) wsl.clone();

wslcl one. pop();
wslcl one. push(3);
System out. println(ws1. pop());

and

11
Il
11
/1
/11

"cloned' now use the sane el enents.

wsl: {}

wsl: {1}

wsl: {1,2}

wslcl one: {1, 2}

wslcl one: {1}

wslcl one: {1, 3}

Because wsl and wslcl one have the sane
elenents, this prints 3 instead of 2

In the following modified example, Ri ght St ack does implement cl one. This means that when rsicl one is cloned
from rs1, operations on the rsicl one stack do not affect the rs1 stack.

1
2
3
4
5
6
7
8
9

}
10

12
13
14
15
16
17
18
19
20
21
22

abstract class AbstractStack inplenents O oneable {
public AbstractStack clone() {

try {

return (Abstract Stack) super.clone();
} catch (C oneNot SupportedException e) {

throw new AssertionError("Shoul d not happen");

}

cl ass Right Stack extends Abstract Stack {

private static final int MAX_STACK = 10;
int[] elenents = new int[MAX_STACK] ;
int top = -1,

voi d push(int newnt) {

el enent s[++top] = new nt;
}
int pop() {

return el enents[top--];

JPL Java Coding Standard v1.0 March 31, 2014.

Page 195

Important rules

23 // GOOD: 'clone' nmethod to create a copy of the el enents.

24 public RightStack clone() {

25 Ri ght St ack cloned = (Ri ght Stack) super.clone();

26 cl oned. el enents = el ements. cl one(); has its own el enents.
27 return cl oned,

28 }

29 }

30

31 public class M ssingMethodd one {

32 public static void nmain(String[] args) {

33 Ri ght Stack rs1 = new Ri ght Stack(); Il rsl: {}

34 rsil. push(1); /1 rsl: {1}

35 rsil. push(2); /1 rsl: {1,2}

36 Ri ght St ack rslclone = rsl.clone(); /'l rsilclone: {1,2}

37 rsicl one. pop(); /1 rsilclone: {1}

38 rsicl one. push(3); /1 rsilclone: {1, 3}

39 System out. println(rsi. pop()); /1 Correctly prints 2
40 }

41 '}

References

® J. Bloch, Effective Java (second edition), ltem 11. Addison-Wesley, 2008.

® Java 6 API Specification: Object.clone().

JPL Java Coding Standard v1.0 March 31, 2014.

Page 196

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Important rules

Garbage collection (1)

® Do not set fields to 'null' in a finalizer
® Do not trigger garbage collection explicitly
® Ensure that a 'finalize' method calls 'super.finalize'

JPL Java Coding Standard v1.0 March 31, 2014. Page 197

Important rules

Do not set fields to 'null' in a finalizer

...

Category: Important > Java objects (2) > Garbage collection (1)

Description: Setting fields to 'null' in a finalizer does not cause the object to be collected by the garbage
collector any earlier, and may adversely affect performance.

A finalizer does not need to set an object's fields to nul I to help the garbage collector. At the point in the Java
object life-cycle when the fi nal i ze method is called, the object is no longer reachable from the garbage collection
roots. Explicitly setting the object's fields to nul I does not cause the referenced objects to be collected by the
garbage collector any earlier, and may even adversely affect performance.

The life-cycle of a Java object has 7 stages:

® Created : Memory is allocated for the object and the initializers and constructors have been run.

® In use : The object is reachable through a chain of strong references from a garbage collection root. A
garbage collection root is a special class of variable (which includes variables on the stack of any thread,
static variables of any class, and references from Java Native Interface code).

® |Invisible : The object has already gone out of scope, but the stack frame of the method that contained the
scope is still in memory. Not all objects transition into this state.

® Unreachable : The object is no longer reachable through a chain of strong references. It becomes a
candidate for garbage collection.

® Collected : The garbage collector has identified that the object can be deallocated. If it has a finalizer, it is
marked for finalization. Otherwise, it is deallocated.

® Finalized : An object with a fi nal i ze method transitions to this state after the finalize method is completed
and the object still remains unreachable.

® Deallocated : The object is a candidate for deallocation.

The call to the fi nal i ze method occurs when the object is in the 'Collected' stage. At that point, it is already
unreachable from the garbage collection roots so any of its references to other objects no longer contribute to
their reference counts.

Recommendation

Ensure that the finalizer does not contain any nul I assignments because they are unlikely to help garbage
collection.

If a finalizer does nothing but nullify an object's fields, it is best to completely remove the finalizer. Objects with
finalizers severely affect performance, and you should avoid defining fi nal i ze where possible.

Example
In the following example, fi nal i ze unnecessarily assigns the object's fields to null.

class Finalizedd ass {
oj ect o = new Object();
String s = "abcdefg";
Integer i = Integer.valued(2);

@verride

protected void finalize() throws Throwabl e {
super.finalize();
/I'No need to nullify fields

1
2
3
4
5
6
7
8
9
10 this.o = null;

JPL Java Coding Standard v1.0 March 31, 2014. Page 198

Important rules

11 this.s = null;
12 this.i = null;
13 }
14}
References
® J. Bloch, Effective Java (second edition), Iltem 7. Addison-Wesley, 2008.
® |BM developerWorks: Explicit nulling.
® Oracle Technology Network: How to Handle Java Finalization's Memory-Retention Issues .
[]

S. Wilson and J. Kesselman, Java Platform Performance: Strategies and Tactics, 1st ed., Appendix A.
Prentice Hall, 2001.

JPL Java Coding Standard v1.0 March 31, 2014. Page 199

http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html#3.2
http://www.oracle.com/technetwork/articles/javase/finalization-137655.html

Important rules

Do not trigger garbage collection explicitly

...

Category: Important > Java objects (2) > Garbage collection (1)

Description: Triggering garbage collection explicitly may either have no effect or may trigger unnecessary
garbage collection. :

You should avoid making calls to explicit garbage collection methods (Runti me. gc and Syst em gc). The calls are
not guaranteed to trigger garbage collection, and they may also trigger unnecessary garbage collection passes
that lead to decreased performance.

Recommendation

It is better to let the Java Virtual Machine (JVM) handle garbage collection. If it becomes necessary to control
how the JVM handles memory, it is better to use the JVM's memory and garbage collection options (for example,
- X, - XX: NewRat i o, - XX: Use* GC) than to trigger garbage collection in the application.

The memory management classes that are used by Real-Time Java are an exception to this rule, because they
are designed to handle garbage collection differently from the JVM default.

Example

The following example shows code that makes connection requests, and tries to trigger garbage collection after it
has processed each request.

1 class RequestHandl er extends Thread {

2 private bool ean i sRunni ng;

3 private Connection conn = new Connection();

4

5 public void run() {

6 whil e (isRunning) {

7 Request req = conn. get Request ();

8 /'l Process the request ...

9

10 Systemgc(); // This call may cause a garbage collection after each request.
11 /1 This will likely reduce the throughput of the RequestHandl er
12 /| because the JVM spends tine on unnecessary garbage collection passes.
13 }

14 }

15 }

It is better to remove the call to Syst em gc and rely on the JVM to dispose of the connection.

References

® Java 6 APl Documentation: System.gc().
® Oracle Technology Network: Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning.

JPL Java Coding Standard v1.0 March 31, 2014. Page 200

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#gc%28%29
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Important rules

Ensure that a 'finalize' method calls 'super.finalize'

Category: Important > Java objects (2) > Garbage collection (1)

Description: A 'finalize' method that does not call super . fi nal i ze may leave cleanup actions undone.

...

A finalize method that overrides the finalizer of a superclass but does not call super. final i ze may leave system
resources undisposed of or cause other cleanup actions to be left undone.

Recommendation

Make sure that all fi nal i ze methods call super. final i ze to ensure that the finalizer of its superclass is executed.
Finalizer chaining is not automatic in Java.

It is also possible to defend against subclasses that do not call super . final i ze by putting the cleanup code into a
finalizer guardian instead of the fi nal i ze method. A finalizer guardian is an anonymous object instance that
contains the cleanup code for the enclosing object in its fi nal i ze method. The only reference to the finalizer
guardian is stored in a private field of the enclosing instance, which means that both the guardian and the
enclosing instance can be finalized at the same time. This way, a subclass cannot block the execution of the
cleanup code by not calling super. final i ze.

Example

In the following example, w ongCache. fi nal i ze does not call super. fi nal i ze, which means that native resources
are not disposed of. However, Ri ght Cache. fi nal i ze does call super. fi nal i ze, which means that native resources
are disposed of.

1 class Local Cache {

2 private Col |l ecti on<NativeResource> | ocal Resources;

3

4 /...

5

6 protected void finalize() throws Throwabl e {

7 for (NativeResource r : |ocal Resources) {

8 r. di spose();

9 }

10 }s

11}

12

13 class WongCache extends Local Cache {

14 /...

15 @verride

16 protected void finalize() throws Throwabl e {

17 /1 BAD: Enpty 'finalize', which does not call 'super.finalize'.
18 /1 Native resources in Local Cache are not di sposed of.
19 }

20 }

21

22 class RightCache extends Local Cache {

23 /...

24 @verride

25 protected void finalize() throws Throwabl e {

26 // GOOD: 'finalize' calls 'super.finalize'.

27 I Native resources in Local Cache are di sposed of.
28 super.finalize();

29 }

30 }

The following example shows a finalizer guardian.

JPL Java Coding Standard v1.0 March 31, 2014. Page 201

Important rules

1 class CuardedLocal Cache {

2 private Coll ection<NativeResource> | ocal Resources;

3 /1 A finalizer guardian, which perfornms the finalize actions for 'GuardedLocal Cache'
4 /1 even if a subclass does not call 'super.finalize' inits 'finalize nethod
5 private Object finalizerQuardian = new Object() {

6 protected void finalize() throws Throwabl e {

7 for (NativeResource r : |ocal Resources) {

8 r. di spose();

9 }

10 b

11 b

12}

References

® Java 7 APl Documentation: Obiject.finalize().
® J. Bloch, Effective Java (second edition), Iltem 7. Addison-Wesley, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 202

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#finalize%28%29

Important rules

Serialization (1)

Do not use 'transient' in a non-serializable class

Ensure that 'readResolve’ has the correct signature

Ensure that a class that implements 'Externalizable' has a public no-argument constructor
Ensure that each non-transient, non-static field in a serializable class is serializable

Ensure that the signatures of 'readObject’ and 'writeObject' on a serializable class are correct

JPL Java Coding Standard v1.0 March 31, 2014. Page 203

Important rules

Do not use 'transient' in a non-serializable class

Category: Important > Java objects (2) > Serialization (1)

Description: Using the 'transient’ field modifier in non-serializable classes has no effect.

...

The transi ent modifier is used to identify fields that are not part of the persistent state of the class. As such, it
only has an effect if the class is serializable, and has no purpose in a non-serializable class.

A field that is marked transi ent in a non-serializable class is likely to be a leftover from a time when the class
was serializable.

Recommendation

If the class is non-serializable, leave out the transi ent modifier. Otherwise, use the modifier, and ensure that the
class (or a relevant supertype) implements Seri al i zabl e.

Example

The following example shows two fields that are declared tr ansi ent . The modifier only has an effect in the class
that implements Seri al i zabl e.

class State {

/1 The 'transient' nodifier has no effect here because
/1l the "State' class does not inplenent 'Serializable'.
private transient int[] stateData;

class PersistentState inplenents Serializable {
private int[] stateData;

1
2
3
4
5}
6
7
8
9 /1 The 'transient' nodifier indicates that this field is not part of

10 /1 the persistent state and should therefore not be serialized.
11 private transient int[] cachedConputedDat a;

12}

References

® Java Language Specification, 3rd Ed: 8.3.1.3 transient Fields.
® Java 6 Object Serialization Specification: 1.5 Defining Serializable Fields for a Class.

JPL Java Coding Standard v1.0 March 31, 2014. Page 204

http://docs.oracle.com/javase/specs/jls/se5.0/html/classes.html#8.3.1.3
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6250

Important rules

Ensure that ‘readResolve’ has the correct signature

Category: Important > Java objects (2) > Serialization (1)

Description: An implementation of 'readResolve' that does not have the signature that is expected by the
Java serialization framework is not recognized by the serialization mechanism.

If a class uses the r eadResol ve method to specify a replacement object instance when the object is read from a
stream, ensure that the signature of r eadResol ve is exactly what the Java serialization mechanism expects.

Recommendation

Ensure that the signature of the r eadResol ve method in the class matches the expected signature:
ANY- ACCESS- MODI FI ER hj ect readResol ve() throws Object StreanException;

Note that the method must return a j ava. | ang. Obj ect .

If readResol ve is used for instance control of a serializable singleton, (that is, to make sure that deserializing a
singleton class does not result in another instance of the singleton) it may be possible to use an enumwith a single
element instead. The Java serialization specification explicitly ensures that deserializing an enumdoes not create
a new instance. (For details about this technique, see [Bloch].)

Example

In the following example, Fal seSi ngl et on. r eadResol ve has the wrong signature, which causes deserialization to
create a new instance of the singleton. However, Si ngl et on. r eadResol ve has the correct signature, which means
that deserialization does not result in another instance of the singleton.

1 class FalseSingleton inplenents Serializable {

2 private static final |ong serial VersionU D = -7480651116825504381L;
3 private static Fal seSingleton instance;

4

5 private Fal seSingleton() {}

6

7 public static Fal seSingleton getlnstance() {

8 if (instance == null) {

9 i nstance = new Fal seSi ngl eton();

10 }

11 return instance;

12 }

13

14 /1 BAD: Signature of 'readResolve' does not match the exact signature that is expected
15 /1 (that is, it does not return 'java.lang.Object').

16 public Fal seSingl eton readResol ve() throws bject StreanException {
17 return Fal seSi ngl et on. getl nstance();

18 }

19 }

20

21 class Singleton inplenments Serializable {

22 private static final |ong serial VersionU D = -7480651116825504381L;
23 private static Singleton instance;

24

25 private Singleton() {}

26

27 public static Singleton getlnstance() {

28 if (instance == null) {

29 i nstance = new Singleton();

30 }

31 return instance;

JPL Java Coding Standard v1.0 March 31, 2014. Page 205

Important rules

32 }

33

34 /1 GOOD: Signature of 'readResolve' nmatches the exact signature that is expected.

35 /1 1t replaces the singleton that is read froma streamwi th an instance of 'Singleton',
36 /'l instead of creating a new singleton.

37 private bject readResolve() throws hject StreanException {

38 return Singleton. getlnstance();

39 }

40 '}

References

® Java API Documentation: Serializable.

® Java 6 Object Serialization Specification: 3.7 The readResolve Method, 1.12 Serialization of Enum
Constants.

* J. Bloch, Effective Java (second edition), ltem 77. Addison-Wesley, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 206

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/input.html#5903
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6469
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial-arch.html#6469

Important rules

Ensure that a class that implements 'Externalizable' has a public no-argument constructor

Category: Important > Java objects (2) > Serialization (1)

Description: A class that implements 'Externalizable’ but does not have a public no-argument constructor
causes an 'InvalidClassException' to be thrown.

A class that implements j ava. i 0. Ext er nal i zabl e must have a public no-argument constructor. The constructor is
used by the Java serialization framework when it creates the object during deserialization. If the class does not
define such a constructor, the Java serialization framework throws an I nval i dd assExcepti on.

The Java Development Kit APl documentation for Ext er nal i zabl e States:

When an Ext er nal i zabl e object is reconstructed, an instance is created using the public no-arg
constructor, then the readext ernal method called.

Recommendation

Make sure that externalizable classes always have a no-argument constructor.

Example

In the following example, w ongMero does not declare a public no-argument constructor. When the Java
serialization framework tries to deserialize the object, an I nval i dd assExcepti on is thrown. However, Meno does
declare a public no-argument constructor, so that the object is deserialized successfully.

1 class WongMeno i npl enents Externalizable {

2 private String meno;

3

4 /1 BAD: No public no-argunment constructor is defined. Deserializing this object
5 /1 causes an 'InvalidC assException'.

6

7 public WongMeno(String nenp) {

8 this.memo = meno;

9 }

10

11 public void witeExternal (ObjectCQutput arg0) throws | OException {
12 /...

13 }

14 public void readExternal (Cbjectlnput in) throws | CException, C assNotFoundException {
15 /...

16 }

17 '}

18

19 class Meno inplenents Externalizable {

20 private String meno;

21

22 /1 GOCD: Declare a public no-argunment constructor, which is used by the
23 /1 serialization framework when the object is deserialized.

24 public Menmo() {

25 }

26

27 public Menmo(String neno) {

28 this. menmo = nmeno;

29 }

30

31 public void witeExternal (ObjectQutput out) throws | OException {
32 /...

JPL Java Coding Standard v1.0 March 31, 2014. Page 207

Important rules

33 }

34 public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {
35 /...

36 }

37 '}

References

® Java APl Documentation: Externalizable.

JPL Java Coding Standard v1.0 March 31, 2014. Page 208

http://docs.oracle.com/javase/6/docs/api/java/io/Externalizable.html

Important rules

Ensure that each non-transient, non-static field in a serializable class is serializable

Category: Important > Java objects (2) > Serialization (1)

Description: A non-transient field in a serializable class must also be serializable otherwise it causes the
class to fail to serialize with a 'NotSerializableException'.

If a serializable class is serialized using the default Java serialization mechanism, each non-static, non-transient
field in the class must also be serializable. Otherwise, the class generates a j ava. i 0. Not Seri al i zabl eExcept i on
as its fields are written out by bj ect Qut put Stream wri t ehj ect .

As an exception, classes that define their own readbj ect and wri t etbj ect methods can have fields that are not
themselves serializable. The readbj ect and wri t etbj ect methods are responsible for encoding any state in
those fields that needs to be serialized.

Recommendation
To avoid causing a Not Seri al i zabl eExcept i on, do one of the following:

® Mark the field as transi ent : Marking the field as transi ent makes the serialization mechanism skip the
field. Before doing this, make sure that the field is not really intended to be part of the persistent state of
the object.

® Define custom readj ect and witej ect methods for the Seri al i zabl e class : Explicitly defining the
readj ect and writ evj ect methods enables you to choose which fields to read from, or write to, an
object stream during serialization.

®* Make the type of the field seri al i zabl e : If the field is part of the object's persistent state and you wish to
use Java's default serialization mechanism, the type of the field must implement Seri al i zabl e. When
choosing this option, make sure that you follow best practices for serialization.

Example

In the following example, w ongPer f or manceRecor d contains a field f act or s that is not serializable but is in a
serializable class. This causes a j ava. i 0. Not Seri al i zabl eExcept i on When the field is written out by wri t ebj ect .
However, Per f or manceRecor d contains a field f act or s that is marked as t ransi ent, SO that the serialization
mechanism skips the field. This means that a correctly serialized record is output by wri t ebj ect .

1 class DerivedFactors { /1l Class that contains derived values conputed fromentries in a
2 private Number efficiency; /'l performance record

3 private Nunber costPerltem

4 private Nunber profitPerltem

5

6 }

7

8 class WongPerformanceRecord inplenents Serializable {

9 private String unitld;

10 private Nurmber dail yThroughput;

11 private Nunber dailyCost;

12 private DerivedFactors factors; // BAD: 'DerivedFactors' is not serializable
13 /1 but is in a serializable class. This

14 /] causes a 'java.io.NotSerializabl eException’
15 /'l when ' WongPerfornmanceRecord' is serialized.
16

17 '}

18

19 class PerformanceRecord inplenments Serializable {

20 private String unitld;

21 private Nurmber dail yThroughput;

22 private Number dail yCost;

JPL Java Coding Standard v1.0 March 31, 2014. Page 209

Important rules

23 transient private DerivedFactors factors; // GOOD: 'DerivedFactors' is declared

24 /1 'transient' so it does not contribute to the
25 /'l serializable state of 'PerformnceRecord'.
26

27 '}

References

® Java API Documentation: Serializable, ObjectOutputStream.

JPL Java Coding Standard v1.0 March 31, 2014. Page 210

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html

Important rules

Ensure that the signatures of ‘'readObject’ and 'writeObject' on a serializable class are correct

Category: Important > Java objects (2) > Serialization (1)

Description: A serialized class that implements 'readObject' or 'writeObject' but does not use the correct
signatures causes the default serialization mechanism to be used.

A serializable object that defines its own serialization protocol using the methods r eadbj ect and wri t ebj ect
must use the signature that is expected by the Java serialization framework. Otherwise, the default serialization
mechanism is used.

Recommendation

Make sure that the signatures of readbj ect and wri t ethj ect on serializable classes use these exact signatures:

1 private void readOoj ect(java.io. Qbject!lnputStreamin)

2 throws | OException, O assNotFoundExcepti on;

3 private void witeCbject(java.io.ObjectCQutputStream out)
4 throws | OExcepti on;

Example

In the following example, W ongNet Request defines readhj ect and wri t ebj ect using the wrong signatures.
However, Net Request defines them correctly.

1 class WongNet Request inplenments Serializable {

2 /1 BAD: Does not match the exact signature required for a custom
3 /] deserialization protocol. WIIl not be called during deserialization.
4 voi d readObj ect (Obj ectl nput Streamin) {

5 /...

6 }

7

8 /1 BAD: Does not match the exact signature required for a custom
9 /'l serialization protocol. WII not be called during serialization.
10 protected void witeObject(ObjectQutputStreamout) {

11 /...

12 }

13 }

14

15 class NetRequest inplenents Serializable {

16 /1 GOOD: Signature for a custom deserialization inplenentation.
17 private void readbject(QbjectlnputStreamin) {

18 /...

19 }

20

21 // GOOD: Signature for a custom serialization inplenentation.

22 private void witeCbject(CbjectQutputStreamout) {

23 /...

24 }

25 1}

References

¢ Java API Documentation: Serializable.
® Oracle Technology Network: Discover the secrets of the Java Serialization API.

JPL Java Coding Standard v1.0 March 31, 2014. Page 211

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
http://www.oracle.com/technetwork/articles/java/javaserial-1536170.html

Important rules

JUnit

® Ensure that a JUnit test case class contains correctly declared test methods
® Ensure that a JUnit test method that overrides 'tearDown' calls 'super.tearDown'
® Use the correct signature for a 'suite' method in JUnit

JPL Java Coding Standard v1.0 March 31, 2014. Page 212

Important rules

Ensure that a JUnit test case class contains correctly declared test methods

...

Category: Important > JUnit

Description: A test case class whose test methods are not recognized by JUnit 3.8 as valid declarations
is not used.

A JUnit 3.8 test case class (that is, a class that is a subtype of j uni t. f ranewor k. Test Case) should contain test
methods, and each method must have the correct signature to be used by JUnit.

Recommendation

Ensure that the test case class contains some test methods, and that each method is of the form:
public void testXXX()

Note that the method name must start with t est and the method must not take any parameters.

This rule applies only to JUnit 3.8-style test case classes. In JUnit 4, it is no longer required to extend
junit.framework. Test Case to mark test methods.

Example

In the following example, Test CaseNoTest s38 does not contain any valid JUnit test methods. However, W Test s
contains two valid JUnit test methods.

1 // BAD: This test case class does not have any valid JUnit 3.8 test nethods.
2 public class TestCaseNoTests38 extends Test Case {

3 /1 This is not a test case because it does not start with '"test'.
4 public void sinpleTest() {

5 /...

6 }

7

8 /1 This is not a test case because it takes two paraneters.
9 public void testNotEquals(int i, int j) {

10 assertEqual s(i !=j, true);

11 }

12

13 /1 This is recognized as a test, but causes JUnit to fail
14 /1 when run because it is not public.

15 voi d test Equal s() {

16 /...

17 }

18 }

19

20 // GOOD: This test case class correctly declares test nethods.
21 public class MyTests extends TestCase {

22 public void testEqual s() {

23 assert Equal s(1, 1);

24 }

25 public void testNot Equal s() {
26 assertFal se(1 == 2);

27 }

28 }

References

® JUnit: JUnit Cookbook.

JPL Java Coding Standard v1.0 March 31, 2014. Page 213

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

Ensure that a JUnit test method that overrides ‘tearDown' calls 'super.tearDown'’

...

Category: Important > JUnit

Description: A JUnit 3.8 test method that overrides ‘tearDown' but does not call 'super.tearDown' may
result in subsequent tests failing, or allow the current state to persist and affect subsequent tests.

A JUnit 3.8 test method that overrides a non-empty t ear Downn method should call super . t ear Down to make sure
that the superclass performs its de-initialization routines. Not calling t ear Down may result in test failures in
subsequent tests, or allow the current state to persist and affect any following tests.

Recommendation

Call super . t ear Down at the end of the overriding t ear Down method.

Example

In the following example, Tear DownNoSuper . t ear Down does not call super . t ear Down, Which may cause subsequent
tests to fail, or allow the internal state to be maintained. However, Tear DownSuper . t ear Down does call

super . t ear Down, at the end of the method, to enable Fr amewor kTest Case. t ear Down to perform de-initialization.

1 // Abstract class that initializes then shuts down the

2 /] framework after each set of tests
3 abstract class Framewor kTest Case extends Test Case {

4 @verride

5 protected void setUp() throws Exception {
6 super . set Up();

7 Framework.init();

8 }

9

10 @verride

11 protected void tearDown() throws Exception {
12 super .t ear Down() ;

13 Fr anmewor k. shut down() ;

14 }

15 }

16

17 /1 The followi ng classes extend 'Framewor kTest Case' to reuse the
18 // 'setUp' and 'tearDown' nethods of the franmework.

19

20 public class Tear DownNoSuper extends Framewor kTest Case {

21 @verride

22 protected void setUp() throws Exception {

23 super. set Up();

24 }

25

26 public void testFranmework() {

27 /...

28 }

29

30 public void testFramework2() {

31 /...

32 }

33

34 @verride

35 protected void tearDown() throws Exception {

36 /1 BAD: Does not call 'super.tearDown'. May cause |later tests to fail
37 /1 when they try to re-initialize an already initialized framework.
38 /1 Even if the framework allows re-initialization, it may maintain the
39 /'l internal state, which could affect the results of succeeding tests.

JPL Java Coding Standard v1.0 March 31, 2014. Page 214

Important rules

40 Systemout.println("Tests conplete");

41 }

42}

43

44 public class Tear DownSuper extends FrameworkTest Case {
45 @verride

46 protected void setUp() throws Exception {

47 super . set Up();

48 }

49

50 public void testFramework() {

51 /...

52 }

53

54 public void testFranework2() {

55 /...

56 }

57

58 @verride

59 protected void tearDown() throws Exception {
60 /1 GOOD: Correctly calls 'super.tearDown' to shut down the
61 /1 frameworKk.

62 Systemout.println("Tests conplete");

63 super . t ear Down();

64 }

65 }

References

® JUnit: JUnit Cookbook.

JPL Java Coding Standard v1.0 March 31, 2014. Page 215

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

Use the correct signature for a 'suite' method in JUnit

...

Category: Important > JUnit

Description: A 'suite' method in a JUnit 3.8 test that does not match the expected signature is not
detected by JUnit.

JUnit 3.8 requires that a sui t e method for defining a Test Sui t e that will be used by a Test Runner has a specific
signature. If the sui t e method does not have the expected signature, JUnit does not detect the method as a suite
method.

Recommendation

Make sure that sui t e methods in junit Test Case classes are declared both publ i ¢ and st ati ¢, and that they have a
return type of j unit. framewor k. Test or one of its subtypes.

Example

In the following example, BadSui t eMet hod. sui t e is not detected by JUnit because it is not declared publ i c.
However, Correct Sui t eMet hod. sui t e is detected by JUnit because it has the expected signature.

1 public class BadSuiteMethod extends TestCase {

2 /1 BAD: JUnit 3.8 does not detect the followi ng nethod as a 'suite' method.
3 /1 The nethod should be public, static, and return 'junit.framework. Test'

4 /1 or one of its subtypes.

5 static Test suite() {

6 TestSuite suite = new TestSuite();

7 sui te. addTest (new MyTests("t est Equal s"));

8 sui te. addTest (new MyTest s("test Not Equal s"));

9 return suite;

10 }

11}

12

13 public class CorrectSuiteMethod extends TestCase {
14 /1 GOOD: JUnit 3.8 correctly detects the followi ng nethod as a 'suite' nethod.
15 public static Test suite() {

16 TestSuite suite = new TestSuite();

17 sui te. addTest (new MyTest s("test Equal s"));

18 sui te. addTest (new MyTest s("test Not Equal s"));
19 return suite;

20 }

21 }

References

® JUnit: JUnit Cookbook.

JPL Java Coding Standard v1.0 March 31, 2014. Page 216

http://junit.sourceforge.net/junit3.8.1/doc/cookbook/cookbook.htm

Important rules

Logic Errors (1)

® Avoid extending or implementing an annotation
® Avoid nested loops that use the same variable
® Do not compare identical expressions

JPL Java Coding Standard v1.0 March 31, 2014. Page 217

Important rules

Avoid extending or implementing an annotation

...

Category: Important > Logic Errors (1)

Description: Extending or implementing an annotation is unlikely to be what the programmer intends.

...

Although an annotation type is a special kind of interface that can be implemented by a concrete class, this is not
its intended use. It is more likely that an annotation type should be used to annotate a class.

Recommendation

Ensure that any annotations are used to annotate a class, unless they are really supposed to be extended or
implemented by the class.

Example

In the following example, the annotation Depr ecat ed is implemented by the class | npl enent sAnnot at i on.

1 public abstract class |nplenmentsAnnotation inplenents Deprecated {

2 1

3}

The following example shows the intended use of annotations: to annotate the class | npl enent sAnnot at i onFi x.

@epr ecat ed
public abstract class |InplenentsAnnotationFix {

1
2

3 11
4}

References

® The Java Language Specification: Annotation Types.
® The Java Tutorials: Annotations.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 218

http://docs.oracle.com/javase/specs/jls/se7/html/jls-9.html#jls-9.6
http://docs.oracle.com/javase/tutorial/java/annotations/index.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid nested loops that use the same variable

...
i

Category: Important > Logic Errors (1)

Description: Nested loops in which the iteration variable is the same for each loop are difficult to
understand.

The behavior of nested loops in which the iteration variable is the same for both loops is difficult to understand
because the inner loop affects the iteration variable of the outer loop. This is probably a typographical error.

Recommendation
Ensure that a different iteration variable is used for each loop.

References

® The Java Language Specification: The basic for Statement.

JPL Java Coding Standard v1.0 March 31, 2014. Page 219

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html#jls-14.14.1

Important rules

Do not compare identical expressions

...

Category: Important > Logic Errors (1)

Description: If the same expression occurs on both sides of a comparison operator, the operator is
redundant, and probably indicates a mistake.

If two identical expressions are compared (that is, checked for equality or inequality), this is typically an indication
of a mistake, because the Boolean value of the comparison is always the same. Often, it indicates that the wrong
qualifier has been used on a field access.

Recommendation

It is never good practice to compare a value with itself. If you require constant behavior, use the Boolean literals
true and f al se, rather than encoding them obscurely as 1 == 1 or similar.

Example

In the example below, the original version of cust onmer compares i d with i d, which always returns true. The
corrected version of cust oner includes the missing qualifier o in the comparison of i d with o. i d.

1 class Custoner {

2

3 public bool ean equal s(oj ect 0) {

4 if (o ==null) return fal se;

5 if (Custoner.class != o.getd ass()) return false;
6 Cust onmer ot her = (Custoner)o;

7 if (!nane.equal s(o.nane)) return fal se;

8 if (id!=1id) return false; // Conparison of identical values
9 return true;

10 }

11}

12

13 class Custoner {

14

15 publ i c bool ean equal s(oj ect 0) {

16 if (o == null) return fal se;

17 if (Custoner.class != o.getd ass()) return fal se;
18 Cust oner ot her = (Custoner)o;

19 if (!nane.equal s(o.nane)) return fal se;

20 if (id!=o0.id) return false; // Conparison corrected
21 return true;

22 }

23 '}

References

®* Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 220

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Magic Constants

Avoid magic numbers and add a named constant
Avoid magic numbers and use an existing named constant
Avoid magic strings and add a named constant

[]
[}
[}
® Avoid magic strings and use an existing named constant

JPL Java Coding Standard v1.0 March 31, 2014. Page 221

Important rules

Avoid magic numbers and add a named constant

...

Category: Important > Magic Constants

Description: A magic number makes code less readable and maintainable.

A magic number is a numeric literal (for example, 8080, 2048) that is used in the middle of a block of code without
explanation. It is considered bad practice to use magic numbers because:

® A number in isolation can be difficult for other programmers to understand.

® |t can be difficult to update the code if the requirements change. For example, if the magic number
represents the number of guests allowed, adding one more guest means that you must change every
occurrence of the magic number.

Recommendation

Assign the magic number to a new named constant, and use this instead. This overcomes the two problems with
magic numbers:

® A named constant (such as MAX_GUESTS) is more easily understood by other programmers.
® Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the number in only one place.

Example

The following example shows a magic number ti meout . This should be replaced by a new named constant, as
shown in the fixed version.

1 // Problemversion
2 public class Magi cConstants

3 {

4 final static public String IP = "127.0.0.1";

5 final static public int PORT = 8080;

6 final static public String USERNAME = "test";

7

8 public void serve(String ip, int port, String user, int tineout) {
9 /1

10 }

11

12 public static void nmain(String[] args) {

13 int tinmeout = 60000; // AVO D: Magi ¢ nunber

14

15 new Magi cConstants().serve(lP, PORT, USERNAME, timeout);
16 }

17 '}

18

19

20 // Fixed version
21 public class Magi cConstants

22 {

23 final static public String IP = "127.0.0.1";

24 final static public int PORT = 8080;

25 final static public String USERNAME = "test";

26 final static public int TIMEQUT = 60000; // Magic nunber is replaced by nanmed constant
27

28 public void serve(String ip, int port, String user, int tineout) {

29 /1

30 }

31

JPL Java Coding Standard v1.0 March 31, 2014. Page 222

Important rules

32 public static void main(String[] args) {

33

34 new Magi cConstants().serve(lP, PORT, USERNAME, TIMEQUT); // Use 'TIMEQUT' constant
35 }

36 }

References

® R. C. Matrtin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.G25. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 223

Important rules

Avoid magic numbers and use an existing named constant

...

Category: Important > Magic Constants

Description: A magic number, which is used instead of an existing named constant, makes code less
readable and maintainable.

A magic number is a numeric literal (for example, 8080, 2048) that is used in the middle of a block of code without
explanation. It is considered bad practice to use magic numbers because:

® A number in isolation can be difficult for other programmers to understand.

® |t can be difficult to update the code if the requirements change. For example, if the magic humber
represents the number of guests allowed, adding one more guest means that you must change every
occurrence of the magic number.

Recommendation

Replace the magic number with the existing named constant. This overcomes the two problems with magic
numbers:

®* A named constant (such as MAX_GUESTS) is more easily understood by other programmers.
® Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the number in only one place.

Example

The following example shows a magic number i nt er nal _port . This should be replaced by the existing named
constant, as shown in the fixed version.

1 // Problemversion

2 public class Magi cConstants

3 A

4 final static public String IP = "127.0.0.1";
5 final static public int PORT = 8080;

6 final static public String USERNAME = "test";
7 final static public int TIMEQUT = 60000;

8

9 public void serve(String ip, int port, String user, int tineout) {
10 /1
11 }

13 public static void main(String[] args) {
14 int internal _port = 8080; // AVO D: Magic nunber

16 new Magi cConstants().serve(lP, internal _port, USERNAME, TI MEQUT);

21 // Fixed version
22 public class Magi cConstants

23 {

24 final static public String IP = "127.0.0.1";

25 final static public int PORT = 8080;

26 final static public String USERNAME = "test";

27 final static public int TIMEQUT = 60000;

28

29 public void serve(String ip, int port, String user, int tineout) {
30 /1

JPL Java Coding Standard v1.0 March 31, 2014. Page 224

Important rules

31 }

32

33 public static void main(String[] args) {

34

35 new Magi cConst ant s().serve(lP, PORT, USERNAME, TIMEQUT); // Use 'PORT' constant
36 }

37 }

References

®* R. C. Matrtin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.G25. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 225

Important rules

Avoid magic strings and add a named constant

...

Category: Important > Magic Constants

Description: A magic string makes code less readable and maintainable.

A magic string is a string literal (for example, " SELECT", "127. 0. 0. 1*) that is used in the middle of a block of code
without explanation. It is considered bad practice to use magic strings because:

® A string in isolation can be difficult for other programmers to understand.

® |t can be difficult to update the code if the requirements change. For example, if the magic string
represents a protocol, changing the protocol means that you must change every occurrence of the
protocol.

Recommendation

Assign the magic string to a new named constant, and use this instead. This overcomes the two problems with
magic strings:

® A named constant (such as sMrp_HELO) is more easily understood by other programmers.
® Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the string in only one place.

Example

The following example shows a magic string user name. This should be replaced by a new named constant, as
shown in the fixed version.

1 // Problemversion
2 public class Magi cConstants

3 {

4 final static public String IP = "127.0.0.1";

5 final static public int PORT = 8080;

6 final static public int TIMEQUT = 60000;

7

8 public void serve(String ip, int port, String user, int tineout) {
9 /1

10 }

11

12 public static void nmain(String[] args) {

13 String username = "test"; // AVOD: Magic string

14

15 new Magi cConstants().serve(lP, PORT, username, TIMEQUT);
16 }

17 '}

18

19

20 // Fixed version
21 public class Magi cConstants

22 {

23 final static public String IP = "127.0.0.1";

24 final static public int PORT = 8080;

25 final static public int USERNAME = "test"; // Magic string is replaced by nanmed constant
26 final static public int TIMEQUT = 60000;

27

28 public void serve(String ip, int port, String user, int tineout) {

29 /1

30 }

31

JPL Java Coding Standard v1.0 March 31, 2014. Page 226

Important rules

32 public static void main(String[] args) {

33

34 new Magi cConstants().serve(lP, PORT, USERNAME, TIMEQUT); // Use 'USERNAME constant
35 }

36 }

References

® R. C. Matrtin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.G25. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 227

Important rules

Avoid magic strings and use an existing named constant

...

Category: Important > Magic Constants

Description: A magic string, which is used instead of an existing named constant, makes code less
readable and maintainable.

A magic string is a string literal (for example, " SELECT", "127. 0. 0. 1*) that is used in the middle of a block of code
without explanation. It is considered bad practice to use magic strings because:

® A string in isolation can be difficult for other programmers to understand.

® |t can be difficult to update the code if the requirements change. For example, if the magic string
represents a protocol, changing the protocol means that you must change every occurrence of the
protocol.

Recommendation
Replace the magic string with the existing named constant. This overcomes the two problems with magic strings:

® A named constant (such as sMrp_HELO) is more easily understood by other programmers.
® Using the same named constant in many places makes the code much easier to update if the
requirements change, because you have to update the string in only one place.

Example

The following example shows a magic string i nt er nal _i p. This should be replaced by the existing named
constant, as shown in the fixed version.

1 // Problemversion
2 public class Magi cConstants

3 A

4 final static public String IP = "127.0.0.1";

5 final static public int PORT = 8080;

6 final static public String USERNAME = "test";

7 final static public int TIMEQUT = 60000;

8

9 public void serve(String ip, int port, String user, int tineout) {
10 /1

11 }

12

13 public static void main(String[] args) {

14 String internal _ip = "127.0.0.1"; // AVOD: Magic string

15

16 new Magi cConstants().serve(internal _ip, PORT, USERNAME, TI MEQUT);
17 }

18 }

19

20

21 /1 Fixed version
22 public class Magi cConstants

23 {

24 final static public String IP = "127.0.0.1";

25 final static public int PORT = 8080;

26 final static public String USERNAME = "test";

27 final static public int TIMEQUT = 60000;

28

29 public void serve(String ip, int port, String user, int tineout) {
30 /1

31 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 228

Important rules

32

33 public static void nmain(String[] args) {

34

35 new Magi cConstants().serve(lP, PORT, USERNAME, TIMEQUT); //Use 'IP constant
36 }

37 }

References

® R. C. Matrtin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.G25. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 229

Important rules

Naming (2)

Avoid declaring a method with the name 'equal’

Avoid declaring a method with the name ‘hashcode'

Avoid declaring a method with the name 'tostring'

Avoid methods in the same class whose names differ only in capitalization
Avoid naming a class with the same name as its superclass

Avoid overloaded methods that have similar parameter types

Avoid using 'enum' as an identifier

JPL Java Coding Standard v1.0 March 31, 2014. Page 230

Important rules

Avoid declaring a method with the name 'equal’

...

Category: Important > Naming (2)

Description: A method named 'equal’ may be intended to be named 'equals’.

...

A method named equal may be a typographical error. equal s may have been intended instead.

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method j ect . equal s.

Example

The following example shows a method named equal . It may be better to rename it.

1 public class Conplex

2 {

3 private double real;

4 private doubl e conpl ex;

5

6 /1

7

8 publ i c bool ean equal (Cbject obj) { // The nethod is naned 'equal .
9 if (!getd ass().equal s(obj.getd ass()))

10 return fal se;

11 Conpl ex other = (Conpl ex) obj;

12 return real == other.real && conplex == other.conpl ex;
13 }

14}

References

® Java 2 Platform, Standard Edition 5.0, API Specification: equals.

JPL Java Coding Standard v1.0 March 31, 2014. Page 231

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#equals(java.lang.Object)

Important rules

Avoid declaring a method with the name 'hashcode'

...

Category: Important > Naming (2)

Description: A method named 'hashcode' may be intended to be named 'hashCode'.

...

A method named hashcode may be a typographical error. hashCode (different capitalization) may have been
intended instead.

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method j ect . hashCode.

Example

The following example shows a method named hashcode. It may be better to rename it.

1 public class Person

2 A

3 private String title;

4 private String forenang;

5 private String surnane;

6

7 /1

8

9 public int hashcode() { // The nethod is named 'hashcode'.
10 int hash = 23 * title.hashCode();
11 hash 2= 13 * forenane. hashCode();
12 return hash ~ surnane. hashCode();
13 }

14}

References

® Java 2 Platform, Standard Edition 5.0, API Specification: hashCode.

JPL Java Coding Standard v1.0 March 31, 2014. Page 232

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#hashCode()

Important rules

Avoid declaring a method with the name 'tostring’

...

Category: Important > Naming (2)

Description: A method named 'tostring' may be intended to be named 'toString'.

...

A method named t ost ri ng may be a typographical error. t oSt ri ng (different capitalization) may have been
intended instead.

Recommendation

Ensure that any such method is intended to have this name. Even if it is, it may be better to rename it to avoid
confusion with the inherited method j ect. toString.

Example

The following example shows a method named tost ri ng. It may be better to rename it.

1 public class Custoner

2 A

3 private String title;

4 private String forenang;

5 private String surnane;

6

7 /1

8

9 public String tostring() { // The nethod is naned 'tostring' .
10 return title + " " + forenane + " " + surnang;
11 }

12}

References

® Java 2 Platform, Standard Edition 5.0, API Specification: toString.

JPL Java Coding Standard v1.0 March 31, 2014. Page 233

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#toString()

Important rules

Avoid methods in the same class whose names differ only in capitalization

...

Category: Important > Naming (2)

Description: Methods in the same class whose names differ only in capitalization are confusing.

...

It is bad practice to have methods in a class with names that differ only in their capitalization. This can be
confusing and lead to mistakes.

Recommendation

Name the methods to make the distinction between them clear.

Example

The following example shows a class that contains two methods: touri and t oURI . One or both of them should be
renamed.

1 public class InternetResource
2 {

3 private String protocol;
4 private String host;

5 private String path;

6

7 /1

8

9 public String toUri() {
10 return protocol + "://" + host + "/" + path;
11 }

12

13 /1

14

15 public String toURI() {
16 return toUri();

17 }

18 }

References

® R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 17.N4. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 234

Important rules

Avoid naming a class with the same name as its superclass

...

Category: Important > Naming (2)

Description: A class that has the same name as its superclass may be confusing.

A class that has the same name as its superclass may be confusing.

Recommendation

Clarify the difference between the subclass and the superclass by using different names.

Example

In the following example, it is not clear that the at t endees field refers to the inner class At t endees and not the
class com conpany. util . Attendees.

1 inport com conpany. util.Attendees;

2

3 public class Meeting

4 {

5 private Attendees attendees;

6

7 /1

8 /1 Many lines

9 /11

10

11 // AVO D: This class has the same nane as its superclass.
12 private static class Attendees extends com conpany.util.Attendees
13 {

14 /1

15 }

16 }

To fix this, the inner class should be renamed.

References

® R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, §17.N4. Prentice Hall, 2008.

JPL Java Coding Standard v1.0 March 31, 2014. Page 235

Important rules

Avoid overloaded methods that have similar parameter types

...

Category: Important > Naming (2)

Description: Overloaded methods that have the same number of parameters, where each pair of
corresponding parameter types is convertible by casting or autoboxing, may be confusing.

Overloaded method declarations that have the same number of parameters may be confusing if none of the
corresponding pairs of parameter types is substantially different. A pair of parameter types A and B is
substantially different if A cannot be cast to B and B cannot be cast to A. If the parameter types are not
substantially different then the programmer may assume that the method with parameter type A is called when in
fact the method with parameter type B is called.

Recommendation

It is generally best to avoid declaring overloaded methods with the same number of parameters, unless at least
one of the corresponding parameter pairs is substantially different.

Example

Declaring overloaded methods process(bj ect obj) and process(String s) is confusing because the parameter
types are not substantially different. It is clearer to declare methods with different names: processj ect (j ect
obj) and processString(String s).

In contrast, declaring overloaded methods process(bj ect obj, String s) and process(String s, int i) iSnot
as confusing because the second parameters of each method are substantially different.

References

* J. Bloch, Effective Java (second edition), ltem 41. Addison-Wesley, 2008.
® Java Language Specification: 15.12 Method Invocation Expressions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 236

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12

Important rules

Avoid using 'enum’ as an identifier

...

Category: Important > Naming (2)

Description: Using 'enum’ as an identifier makes the code incompatible with Java 5 and later.

...

Enumerations, or enums, were introduced in Java 5, with the keyword enum Code written before this may use
enumas an identifier. To compile such code, you must compile it with a command such as j avac -source 1.4
However, this means that you cannot use any new features that are provided in Java 5 and later.

Recommendation

To make it easier to compile the code and add code that uses new Java features, rename any identifiers that are
named enumin legacy code.

Example

In the following example, enumis used as the name of a variable. This means that the code does not compile
unless the compiler's source language is set to 1.4 or earlier. To avoid this constraint, the variable should be

renamed.
class Ad
{
public static void main(String[] args) {

1

2

3

4 int enum=13; // AVOD: 'enunl is a variable.

5 System out. println("The value of enumis " + enum;
6

7

}

References

® Java Language Specification: 8.9 Enums.

JPL Java Coding Standard v1.0 March 31, 2014. Page 237

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9

Important rules

Random (1)

® Do not create an instance of 'Random' for each pseudo-random number required

JPL Java Coding Standard v1.0 March 31, 2014. Page 238

Important rules

Do not create an instance of 'Random’ for each pseudo-random number required

...

Category: Important > Random (1)

Description: Creating an instance of 'Random’ for each pseudo-random number required does not
guarantee an evenly distributed sequence of random numbers.

A program that uses j ava. uti | . Randomto generate a sequence of pseudo-random numbers should not create a
new instance of Randomevery time a new pseudo-random number is required (for example, new
Random() . next I nt ()).

According to the Java API specification:

If two instances of Randomare created with the same seed, and the same sequence of method
calls is made for each, they will generate and return identical sequences of numbers.

The sequence of pseudo-random numbers returned by these calls depends only on the value of the seed. If you
construct a new Randomobject each time a pseudo-random number is needed, this does not generate a good
distribution of pseudo-random numbers, even though the parameterless Randon{) constructor tries to initialize
itself with a unique seed.

Recommendation

Create a Randomobject once and use the same instance when generating sequences of pseudo-random numbers
(by calling next I nt, next Long, and so on).

Example

In the following example, generating a series of pseudo-random numbers, such as not Real | yRandomand

not Real | yRandon®, by creating a new instance of Randomeach time is unlikely to result in a good distribution of
pseudo-random numbers. In contrast, generating a series of pseudo-random numbers, such as randont and
randon®, by calling next I nt each time is likely to result in a good distribution. This is because the numbers are
based on only one Randomobject.

1 public static void main(String args[]) {

2 /1 BAD: A new 'Randomi object is created every tine
3 /'l a pseudo-randominteger is required.

4 int not Real | yRandom = new Random().nextlInt();

5 i nt not Real | yRandon2 = new Randon{).nextInt();

6

7 /1 GOOD: The sane ' Randoml object is used to generate
8 /1 two pseudo-random i ntegers.

9 Random r = new Randon();

10 int randoml = r.nextlInt();

11 int randon2 = r.nextlInt();

12}

References

® Java APl Documentation: Random.

JPL Java Coding Standard v1.0 March 31, 2014. Page 239

http://docs.oracle.com/javase/6/docs/api/java/util/Random.html

Important rules

Result Checking

Avoid calling 'next' from an iterator implementation of 'hasNext'
Do not ignore a method's return value
Ensure that the results of all method calls are used

[]
[}
[}
® Handle the results of calls to a particular method consistently

JPL Java Coding Standard v1.0 March 31, 2014. Page 240

Important rules

Avoid calling 'next' from an iterator implementation of ‘hasNext'

...

Category: Important > Result Checking

Description: Iterator implementations whose 'hasNext' method calls 'next' are most likely incorrect.

...

Iterator implementations with a hasNext method that calls the next method are most likely incorrect. This is
because next changes the iterator's position to the next element and returns that element, which is unlikely to be
desirable in the implementation of hasNext .

Recommendation

Ensure that any calls to next from within hasNext are legitimate. The hasNext method should indicate whether
there are further elements remaining in the iteration without changing the iterator's state by calling next .

Example

In the following example, which outputs the contents of a string, hasNext calls next , which has the effect of
changing the iterator's position. Given that mai n also calls next when it outputs an item, some items are skipped
and only half the items are output.

1 public class NextFromiterator inplenents Iterator<String> {
2 private int position = -1;

3 private List<String> list = new ArrayList<String>() {{
4 add("al pha"); add("bravo"); add("charlie"); add("delta"); add("echo"); add("foxtrot");
5 I

6

7 public bool ean hasNext () {

8 return next() !'=null; // BAD: Call to 'next'

9 }

10

11 public String next() {

12 posi ti on++;

13 return position < list.size() ? list.get(position) : null;
14 }

15

16 public void renpve() {

17 /1

18 }

19

20 public static void main(String[] args) {

21 Next From terator x = new NextFromterator();

22 whi | e(x. hasNext ()) {

23 Systemout. println(x.next());

24 }

25 }

26 '}

Instead, the implementation of hasNext should use another way of indicating whether there are further elements in
the string without calling next . For example, hasNext could check the underlying array directly to see if there is an
element at the next position.

References

® Java API Documentation: Iterator.hasNext(), Iterator.next().

JPL Java Coding Standard v1.0 March 31, 2014. Page 241

http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#hasNext%28%29
http://docs.oracle.com/javase/6/docs/api/java/util/Iterator.html#next%28%29

Important rules

Do not ignore a method's return value

...

Category: Important > Result Checking

Description: Ignoring an exceptional value that is returned by a method may cause subsequent code to
fail.

Many methods in the Java Development Kit (for examples, see the references below) return status values (for
example, as an i nt) to indicate whether the method execution finished normally. They may return an error code if
the method did not finish normally. If the method result is not checked, exceptional method executions may cause
subsequent code to fail.

Recommendation

You should insert additional code to check the return value and take appropriate action.

Example

The following example uses the j ava. i o. | nput St ream read method to read 16 bytes from an input stream and
store them in an array. However, read may not actually be able to read as many bytes as requested, for example
because the stream is exhausted. Therefore, the code should not simply rely on the array b being filled with
precisely 16 bytes from the input stream. Instead, the code should check the method's return value, which
indicates the number of bytes actually read.

1 java.io.lnputStreamis = (...);
2 byte[] b = new byte[16];
3 is.read(b);

References

CERT Secure Coding Standards: EXP00-J. Do not ignore values returned by methods.

Java APl Documentation, java.util.Queue: offer.

Java API Documentation, java.util.concurrent.BlockingQueue: offer.

Java API Documentation, java.util.concurrent.locks.Condition: await, awaitUntil, awaitNanos.

Java APl Documentation, java.io.File: createNewFile, delete, mkdir, mkdirs, renameTo, setLastModified,
setReadOnly, setWritable(boolean), setWritable(boolean, boolean).

® Java API Documentation, java.io.InputStream: skip, read(byte[]), read(byte[], int, int).

JPL Java Coding Standard v1.0 March 31, 2014. Page 242

https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+values+returned+by+methods
http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html#offer%28E%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html#offer%28E,%20long,%20java.util.concurrent.TimeUnit%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#await%28long,%20java.util.concurrent.TimeUnit%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#awaitUntil%28java.util.Date%29
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html#awaitNanos%28long%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#createNewFile%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#delete%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#mkdir%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#mkdirs%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#renameTo%28java.io.File%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setLastModified%28long%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setReadOnly%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setWritable%28boolean%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html#setWritable%28boolean,%20boolean%29
http://docs.oracle.com/javase/6/docs/api/java/io/InputStream.html#skip%28long%29

Important rules

Ensure that the results of all method calls are used

...

Category: Important > Result Checking

Description: If most of the calls to a method use the return value of that method, the calls that do not
check the return value may be mistakes.

If the result of a method call is used in most cases, any calls to that method where the result is ignored are
inconsistent, and may be erroneous uses of the API. Often, the result is some kind of status indicator, and is
therefore important to check.

Recommendation

Ensure that the results of all calls to a particular method are used. The return value of a method that returns a
status value should normally be checked before any modified data or allocated resource is used.

Example

Line 1 of the following example shows the value returned by get being ignored. Line 3 shows it being assigned to

fs.

1 FileSystemget(conf); // Return value is not used
2
3 FileSystemfs = FileSystemget(conf); // Return value is assigned to 'fs'

References

® CERT Secure Coding Standards: EXP00-J. Do not ignore values returned by methods.

JPL Java Coding Standard v1.0 March 31, 2014. Page 243

https://www.securecoding.cert.org/confluence/display/java/EXP00-J.+Do+not+ignore+values+returned+by+methods

Important rules

Handle the results of calls to a particular method consistently

...

Category: Important > Result Checking

Description: If the same operation is usually performed on the result of a method call, any cases where it
is not performed may indicate resource leaks or other problems.

If the same operation (for example, free, del et e, cl ose) is usually performed on the result of a method call, any
instances where it is not performed may be misuses of the API, leading to resource leaks or other problems.

Recommendation

Ensure that the same operation is performed on the result of all calls to a particular method, if appropriate.

Example

In the following example of good usage, the result of the call to wri t er. pr epar eAppendVval ue is assigned to
out Val ue, and later cl ose is called on out val ue. Any instances where cl ose is not called may cause resource
leaks.

1 DataQutput Stream outValue = null;

2 try {

3 out Val ue = writer. prepareAppendVal ue(6);
4 out Val ue. write("val ue0". getBytes());
5}

6 catch (I OException e) {

7}

8 finally {

9 if (outValue !'= null) {

10 out Val ue. cl ose();

11 }

12}

JPL Java Coding Standard v1.0 March 31, 2014. Page 244

Important rules

Size

Avoid creating classes that contain many fields

Avoid creating files that contain many lines of code

Avoid creating methods that contain many levels of nesting
Avoid creating methods that contain many lines of code
Avoid creating methods that have many parameters

Avoid too many complex statements in a block

Review files that have been changed by many authors

JPL Java Coding Standard v1.0 March 31, 2014. Page 245

Important rules

Avoid creating classes that contain many fields

...

Category: Important > Size

Description: A class that contains a high number of fields may be too big or need refactoring. The number
of fields should be less than 26. :

A class that contains a high number of fields may indicate the following problems:

®* The class may be too big or have too many responsibilities.
® Several of the fields may be part of the same abstraction.

Recommendation
The solution depends on the reason for the high number of fields:

® |f the class is too big, you should split it into multiple smaller classes.
* |f several of the fields are part of the same abstraction, you should group them into a separate class, using
the 'Extract Class' refactoring described in [Fowler].

Example

In the following example, class Per son contains a number of fields.

1 class Person {

2 private String mfirstNang;
3 private String m Last Nareg;

4 private int mhouseNunber;

5 private String mstreet;

6 private String msettlement;
7 private Country mcountry;

8 private Postcode m postcode;
9 /1

10 }

This can be refactored by grouping fields that are part of the same abstraction into new classes Nane and Addr ess.

cl ass Nanme {

private String mfirstName;
private String m.l ast Nang;
/1

class Address {
private int m houseNunber;

1
2
3
4
5}
6
7
8
9 private String mstreet;

10 private String msettlenent;
11 private Country mcountry;
12 private Postcode m postcode;
13 /1

14}

15

16 class Person {

17 private Name m nane;

18 private Address m address;
19 /1

20 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 246

Important rules

References

®* M. Fowler, Refactoring. Addison-Wesley, 1999.

JPL Java Coding Standard v1.0 March 31, 2014. Page 247

Important rules

Avoid creating files that contain many lines of code

...

Category: Important > Size

Description: A file that contains a high number of lines of code may be difficult to maintain, increases the
likelihood of merge conflicts, may increase network traffic, and may indicate weak code organisation. The
number of lines in the file should be less than 1000.

A file that contains a high number of lines of code has a number of problems:

® |t can be difficult to understand and maintain, even with good tool support.

® [tincreases the likelihood of multiple developers needing to work on the same file at once, and it therefore
increases the likelihood of merge conflicts.

® |t may increase network traffic if you use a version control system that requires the whole file to be
transmitted even for a tiny change.

® It may arise as a result of bundling many unrelated things into the same file, and so it can indicate weak
code organisation.

Recommendation
The solution depends on the reason for the high number of lines:

® |f the file's main class is too large, you should refactor it into smaller classes, for example by using the
'Extract Class' refactoring from [Fowler].

® If the file's main class contains many nested classes, you should move the nested classes to their own
files (in a subsidiary package, where appropriate).

® |f the file contains multiple non-public classes in addition to its main class, you should move them into
separate files. This is particularly important if they are logically unrelated to the file's main class.

® If the file has been automatically generated by a tool, no changes are required because the file will not be
maintained by a programmer.

References

®* M. Fowler, Refactoring. Addison-Wesley, 1999.

JPL Java Coding Standard v1.0 March 31, 2014. Page 248

Important rules

Avoid creating methods that contain many levels of nesting

...

Category: Important > Size

Description: A method that contains a high level of nesting may be difficult to understand. The number of
levels should be less than 10.

A method that contains a high level of nesting can be very difficult to understand. As noted in [McConnell], the
human brain cannot easily handle more than three levels of nested i f statements.

Recommendation
Extract nested statements into new methods, for example by using the 'Extract Method' refactoring from [Fowler].
For more ways to reduce the level of nesting in a method, see [McConnell].

Furthermore, a method that has a high level of nesting often indicates that its design can be improved in other
ways, as well as dealing with the nesting problem itself.

Example

In the following example, the code has four levels of nesting and is unnecessarily difficult to read.

1 public static void printCharacterCodes_Bad(String[] strings) {
2 if (strings !=null) {

3 for (String s : strings) {

4 if (s!=null) {

5 for (int i =0; i <s.length(); i++) {

6 Systemout.println(s.charAt(i) + "=" + (int) s.charAt(i));
7 }

8 }

9 }

10 }

11}

In the following modified example, some of the nested statements have been extracted into a new method
PrintAll Charlnts.

1 public static void printAlCharlnts(String s) {

2 if (s!=null) {

3 for (int i =0; i <s.length(); i++) {

4 Systemout.println(s.charAt(i) + "=" + (int) s.charAt(i));
5 }

6 }

7}

8 public static void printCharacterCodes_CGood(String[] strings) {
9 if (strings !=null) {

10 for(String s : strings){

11 printAll Charlnts(s);

12 }

13 }

14}

References

®* M. Fowler, Refactoring, pp. 89-95. Addison-Wesley, 1999.
® S. McConnell, Code Complete, 2nd Edition, §19.4. Microsoft Press, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 249

Important rules

Avoid creating methods that contain many lines of code

...

Category: Important > Size
Description: A method that contains a high number of lines of code may be difficult to maintain and is
likely to lack cohesion. The number of lines in the method should be less than 300.
A method that contains a high number of lines of code has a number of problems:
® |t can be difficult to understand, difficult to check, and a common source of defects (particularly towards

the end of the method, because few people read that far).
® |tis likely to lack cohesion because it has too many responsibilities.
® |t increases the risk of introducing new defects during routine code changes.

Recommendation

Break up long methods into smaller methods by extracting parts of their functionality into simpler methods, for
example by using the 'Extract Method' refactoring from [Fowler]. As an approximate guide, a method should fit on

one screen or side of Letter/A4 paper.

References
® M. Fowler, Refactoring, pp. 89-95. Addison-Wesley, 1999.

JPL Java Coding Standard v1.0 March 31, 2014. Page 250

Important rules

Avoid creating methods that have many parameters

...

Category: Important > Size

Description: A method or constructor that has a high number of parameters makes maintenance more
difficult. The number of parameters should be less than 9.

A method (or constructor) that uses a high number of formal parameters makes maintenance more difficult:

® |t is difficult to write a call to the method, because the programmer must know how to supply an
appropriate value for each parameter.

® |t is externally difficult to understand, because calls to the method are longer than a single line of code.

® |t can be internally difficult to understand, because it has so many dependencies.

Recommendation
Restrict the number of formal parameters for a method, according to the reason for the high number:

® Several of the parameters are logically related, but are passed into the method separately. The
parameters that are logically related should be grouped together (see the ‘Introduce Parameter Object'
refactoring on pp. 238-242 of [Fowler]).

® The method has too many responsibilities. It should be broken into multiple methods (see the 'Extract
Method' refactoring on pp. 89-95 of [Fowler]), and each new method should be passed a subset of the
original parameters.

® The method has redundant parameters that are not used. The two main reasons for this are: (1)
parameters were added for future extensibility but are never used; (2) the body of the method was
changed so that it no longer uses certain parameters, but the method signature was not correspondingly
updated. In both cases, the theoretically correct solution is to delete the unused parameters (see the
'Remove Parameter' refactoring on pp. 223-225 of [Fowler]), although you must do this cautiously if the
method is part of a published interface.

When a method is part of a published interface, one possible solution is to add a new, wrapper method to the
interface that has a tidier signature. Alternatively, you can publish a new version of the interface that has a better
design. Clearly, however, neither of these solutions is ideal, so you should take care to design interfaces the right
way from the start.

The practice of adding parameters for future extensibility is especially bad. It is confusing to other programmers,
who are uncertain what values they should pass in for these unnecessary parameters, and it adds unused code
that is potentially difficult to remove later.

Examples

In the following example, although the parameters are logically related, they are passed into the pri nt Annot ati on
method separately.

1 void printAnnotation(String annotationMessage, int annotationLine, int annotationOfset,
2 i nt annot ati onLength) {

3 Systemout. println("Message: " + annotationMessage);

4 Systemout.printin("Line: " + annotationLine);

5 Systemout.printin("Ofset: " + annotati onOfset);

6 System out.println("Length: " + annotationLength);

In the following modified example, the parameters that are logically related are grouped together in a class, and
an instance of the class is passed into the method instead.

1 class Annotation {

JPL Java Coding Standard v1.0 March 31, 2014. Page 251

Important rules

2 /...

3}

4

5 void printAnnotati on(Annotation annotation) {

6 Systemout. println("Message: " + annotation. get Message());
7 Systemout.println("Line: " + annotation.getLine());

8 Systemout.printin("Ofset: " + annotation.getOfset());

9 Systemout.println("Length: " + annotation.getLength());
10 }

In the following example, the pri nt Menber shi p method has too many responsibilities, and so needs to be passed
four arguments.

1 void printMenbership(Set<Fellow> fellows, Set<Menber> nenbers,
2 Set <Associ at e> associ ates, Set<Student> students) ({
3 for(Fellow f: fellows) {

4 System out. println(f);

5 }

6 for(Member m nenbers) {

7 Systemout.println(m;

8 }

9 for(Associate a: associates) {

10 Systemout.println(a);

11 }

12 for(Student s: students) {

13 System out. println(s);

14 }

15 }

16

17 wvoid printRecords() {

18 /...

19 pri nt Menber shi p(fell ows, nenbers, associates, students);
20 }

In the following modified example, pri nt Menber shi p has been broken into four methods. (For brevity, only one
method is shown.) As a result, each new method needs to be passed only one of the original four arguments.

voi d printFell ows(Set<Fellow> fellows) {

for(Fellow f: fellows) {
System out. println(f);

}

1
2
3
4
5}
6
7 0. ..
8
9

void printRecords() {

10 /...

11 printFellows(fell ows);

12 print Menber s(nenbers) ;

13 print Associ at es(associ at es);
14 print St udent s(students);

15 }

References

® M. Fowler, Refactoring. Addison-Wesley, 1999.

JPL Java Coding Standard v1.0 March 31, 2014. Page 252

Important rules

Avoid too many complex statements in a block

...

Category: Important > Size

Description: A block that contains too many complex statements becomes unreadable and
unmaintainable.

Code has a tendency to become more complex over time. A method that is initially simple may need to be
extended to accommodate additional functionality or to address defects. Before long it becomes unreadable and
unmaintainable, with many complex statements nested within each other.

This rule applies to a block that contains a significant number of complex statements. Note that this is quite
different from just considering the number of statements in a block, because each complex statement is
potentially a candidate for being extracted to a new method as part of refactoring. For the purposes of this rule,
loops and switch statements are considered to be complex.

Recommendation

To make the code more understandable and less complex, identify logical units and extract them to new
methods. As a result, the top-level logic becomes clearer.

References

* M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999.
®* W. C. Wake, Refactoring Workbook. Addison-Wesley Professional, 2004.

JPL Java Coding Standard v1.0 March 31, 2014. Page 253

Important rules

Review files that have been changed by many authors

...

Category: Important > Size

Description: A file that has been worked on by a high number of authors is a potential source of defects,
and may lack conceptual integrity. Ideally, the number of authors should be less than 4.

A file's Javadoc comment can include a tag that lists the authors who have worked on the file.

A file that has been changed by a large number of different authors is the product of many minds. New authors
working on the file may be less familiar with the design and implementation of the code than the original authors,
which can be a potential source of defects. Furthermore, if the code is not carefully maintained, it often results in

a lack of conceptual integrity.

Recommendation

There is clearly no way to reduce the number of authors that have worked on a file - it is impossible to rewrite
history. However, you should pay special attention in a code review to a file that has been worked on by a large
number of authors. The file may be need to be refactored or rewritten by an individual, experienced programmer.

References

® F. P. Brooks Jr, The Mythical Man-Month, Chapter 4. Addison-Wesley, 1974.

JPL Java Coding Standard v1.0 March 31, 2014. Page 254

Important rules

Spring

Add 'description’ elements to Spring bean definitions

A non-abstract parent Spring bean must not specify an abstract class
Avoid defining too many Spring beans in the same file

Avoid overriding a property with the same contents in a child Spring bean
Avoid using autowiring in Spring beans

Create a common parent bean for Spring beans that share properties
Ensure that each property in a Spring bean definition has a matching setter
Put 'import' statements before Spring bean definitions

Use 'id' instead of 'name’ to name a Spring bean

Use a type name instead of an index number in a Spring 'constructor-arg' element
Use local references when referring to Spring beans in the same file

Use setter injection instead of constructor injection when using Spring

Use shortcut forms in Spring bean definitions

JPL Java Coding Standard v1.0 March 31, 2014. Page 255

Important rules

Add 'description' elements to Spring bean definitions

...

Category: Important > Spring

Description: Adding 'description’ elements to a Spring XML bean definition file is good practice.

In a Spring XML bean definition file, adding a <descri pti on> element to a <bean> element or the enclosing <beans>
element to document the purpose of the bean specification is good practice. A descri pti on element also has the
advantage of making it easier for tools to detect and display the documentation for your bean specifications.

Recommendation

Add a <descri ption> element either in the <bean> element or its enclosing <beans> element.

Example

The following example shows a Spring XML bean definition file that includes <descri pti on> elements.

1 <beans>

2 <l--Using a description element nakes it easier for tools to pick up
3 docunentation of the bean configuration-->

4 <descri ption>

5 This file configures the various service beans.

6 </ description>

7

8

9

<I--You can al so put a description elenent in a bean-->
<bean i d="baseService" abstract="true">

10 <descri ption>

11 Thi s bean defines base properties conmon to the service beans
12 </ description>

13 L.

14 </ bean>

15

16 <bean i d="shi ppi ngServi ce"

17 cl ass="docunent ati on. exanpl es. spri ng. Shi ppi ngServi ce"
18 par ent =" baseServi ce" >

19 .

20 </ bean>

21

22 <bean i d="order Servi ce"

23 cl ass="docunent at i on. exanpl es. spri ng. Or der Ser vi ce"

24 par ent =" baseServi ce">

25 A

26 </ bean>

27 <[/ beans>

References

® ONJava: Twelve Best Practices For Spring XML Configurations.

JPL Java Coding Standard v1.0 March 31, 2014. Page 256

http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=3

Important rules

A non-abstract parent Spring bean must not specify an abstract class

...

Category: Important > Spring

Description: A non-abstract Spring bean that is a parent of other beans and specifies an abstract class
causes an error during bean instantiation.

A non-abstract Spring bean that is a parent of other beans must not specify an abstract class. Doing so causes
an error during bean instantiation.

Recommendation

Make sure that a non-abstract bean does not specify an abstract class, by doing one of the following:

® Specify that the bean is also abstract by adding abstract ="t rue" to the bean specification.
® |f possible, update the class that is specified by the bean so that it is not abstract.

You can also make the XML parent bean definition abstract and remove any references from it to any class (in
which case it becomes a pure bean template). Note that, like an abstract class, an abstract bean cannot be used
on its own and only provides property and constructor definitions to its children.

Example

In the following example, the bean wr ongConnect i onPool is using an abstract class, Connect i onPool , which causes
an error. Instead, the bean should be declared abst r act, as shown in the definition of connect i onPool .

1 <beans>

2 <I--BAD: A non-abstract bean should use a concrete cl ass.

3 ' ConnectionPool' is an abstract class.-->

4 <bean i d="w ongConnecti onPool "

5 cl ass="docunent ati on. exanpl es. spri ng. Connecti onPool "/ >

6 <bean i d="appReqPool 1" cl ass="docunent ati on. exanpl es. spri ng. AppRequest Connect i onPool "
7 par ent =" wr ongConnect i onPool "/ >

8

9 <I--GO0D: A bean that specifies an abstract class shoul d be declared 'abstract'.-->
10 <bean i d="connecti onPool "

11 cl ass="docunent ati on. exanpl es. spri ng. Connecti onPool " abstract="true"/>

12 <bean i d="appReqPool 2" cl ass="docunent ati on. exanpl es. spri ng. AppRequest Connect i onPool "
13 par ent =" connecti onPool "/ >

14 </ beans>

References

® Spring Framework Reference Documentation 3.0: 3.7 Bean definition inheritance.

JPL Java Coding Standard v1.0 March 31, 2014. Page 257

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-child-bean-definitions

Important rules

Avoid defining too many Spring beans in the same file

...

Category: Important > Spring

Description: Too many beans in a file can make the file difficult to understand and maintain.

...

Too many bean definitions in a single file can make the file difficult to understand and maintain. It is also an
indication that the architecture of the system is too tightly coupled and can be refactored.

Recommendation

Refactor related bean definitions into separate files, and compose them using the <i nport/ > element.

Example

The following example shows a configuration file that imports two other configuration files. These two files were
created by refactoring a file that contained too many bean definitions.

1 <beans>

2 <!l --Conpose configuration files by using the "inport' elenent.-->
3 <i nport resource="services.xm"/>

4 <i nport resource="resources/ messageSource. xm "/ >

5

6 <bean i d="beanl" class="..."/>

7 <bean i d="bean2" class="..."/>

8 </ beans>

References

® Spring Framework Reference Documentation 3.0: 3.2.2.1 Composing XML-based configuration metadata.

JPL Java Coding Standard v1.0 March 31, 2014. Page 258

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-xml-import

Important rules

Avoid overriding a property with the same contents in a child Spring bean

...

Category: Important > Spring

Description: A bean property that overrides the same property in a parent bean, and has the same
contents, is useless.

A property in a child bean that overrides a property with the same name in its parent and has the same contents
is useless. This is because the bean inherits the property from its parent anyway.

Recommendation

If possible, remove the property in the child bean.

Example

In the following example, regi st ry is defined in both the parent bean and the child bean. It should be removed
from the child bean.

1 <beans>

2 <bean i d="baseShi ppi ngServi ce" abstract="true">
3 <property nane="transactionHel per">

4 <ref bean="transacti onHel per"/>

5 </ property>

6 <property nanme="dao">

7 <ref bean="dao"/>

8 </ property>

9 <property nanme="registry">

10 <ref bean="basi cRegistry"/>

11 </ property>

12 </ bean>

13

14 <bean i d="shi ppi ngSer vi ce"

15 cl ass="docunent at i on. exanpl es. spri ng. Shi ppi ngSer vi ce"

16 par ent =" baseShi ppi ngServi ce" >

17 <I--AVO D: This property is already defined with the same value in the parent bean.-->
18 <property nanme="registry">

19 <ref bean="basi cRegistry"/>

20 </ property>

21 <property nane="shi ppi ngProvi der" val ue="Federal Parcel Service"/>
22 </ bean>

23 </ beans>

References

® Spring Framework Reference Documentation 3.0: 3.7 Bean definition inheritance.

JPL Java Coding Standard v1.0 March 31, 2014. Page 259

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-child-bean-definitions

Important rules

Avoid using autowiring in Spring beans

...

Category: Important > Spring

Description: Using autowiring in Spring beans may make it difficult to maintain large projects.

...

Using Spring autowiring can make it difficult to see what beans get passed to constructors or setters. The Spring
Framework Reference documentation cites the following disadvantages of autowiring:

® Explicit dependencies in property and const r uct or - ar g Settings always override autowiring. You cannot
autowire so-called simple properties such as primitives, Strings, and d asses (and arrays of such simple
properties). This limitation is by design.

® Autowiring is less exact than explicit wiring. Although ... Spring is careful to avoid guessing in case of
ambiguity that might have unexpected results, the relationships between your Spring-managed objects are
no longer documented explicitly.

® Wiring information may not be available to tools that may generate documentation from a Spring container.

® Multiple bean definitions within the container may match the type specified by the setter method or
constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily a problem.
However for dependencies that expect a single value, this ambiguity is not arbitrarily resolved. If no unique
bean definition is available, an exception is thrown.

Recommendation

The Spring Framework Reference documentation suggests the following ways to address problems with
autowired beans:

® Abandon autowiring in favor of explicit wiring.

® Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se.

® Designate a single bean definition as the primary candidate by setting the pri mary attribute of its <bean/ >
element to true.

® If you are using Java 5 or later, implement the more fine-grained control available with annotation-based
configuration.

Example

The following example shows a bean, aut oW r edOr der Ser vi ce, that is defined using autowiring, and an improved
version of the bean, or der Servi ce, that is defined using explicit wiring.

1 <I--AVO D: Using autowiring nakes it difficult to see the dependencies of the bean-->
2 <bean id="aut oW redOrder Service"

3 cl ass="docunent ati on. exanpl es. spri ng. Order Servi ce"

4 aut owi r e="byNane"/ >

5

6 <!--CGOOD: Explicitly specifying the properties of the bean docunents its dependencies
7 and nakes the bean configuration easier to naintain-->

8 <bean id="orderService"

9 cl ass="docunent ati on. exanpl es. spri ng. Or der Servi ce">

10 <property nanme="DAO' >

11 <i dref bean="dao"/>

12 </ property>

13 </ bean>

References

® Spring Framework Reference Documentation 3.0: 3.4.5.1 Limitations and disadvantages of autowiring.
® ONJava: Twelve Best Practices For Spring XML Configurations.

JPL Java Coding Standard v1.0 March 31, 2014. Page 260

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-autowired-exceptions
http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=1

Important rules

Create acommon parent bean for Spring beans that share properties

...

Category: Important > Spring

Description: Beans that share similar properties exhibit unnecessary repetition in the bean definitions and
make the system's architecture more difficult to see.

Beans that share a considerable number of similar properties exhibit unnecessary repetition in the bean
definitions and make the system's architecture more difficult to see.

Recommendation

Try to move the properties that the bean definitions share to a common parent bean. This reduces repetition in
the bean definitions and gives a clearer picture of the system's architecture.

Example

The following example shows a configuration file that contains two beans that share several properties with the
same values.
1 <!--AVA D: 'shippingService' and 'orderService' share several properties with the sane val ues-->

2 <bean id="shippi ngService" class="docunentati on. exanpl es. spri ng. Shi ppi ngServi ce">
3 <property nanme="transactionHel per">

4 <ref bean="transacti onHel per"/>

5 </ property>

6 <property nanme="dao">

7 <ref bean="dao"/>

8 </ property>

9 <property nanme="registry">

10 <ref bean="basi cRegistry"/>

11 </ property>

12

13 <property nanme="shi ppi ngProvi der" val ue="Federal Parcel Service"/>
14 </ bean>

15

16 <bean id="order Service" class="docunentation.exanpl es. spring. O derService">
17 <property nanme="transacti onHel per">

18 <ref bean="transacti onHel per"/>

19 </ property>

20 <property nanme="dao">

21 <ref bean="dao"/>

22 </ property>

23 <property nanme="registry">

24 <ref bean="basi cRegistry"/>

25 </ property>

26

27 <property nanme="order Ref erence" val ue="8675309"/>

28 </ bean>

The following example shows how the shared properties have been moved into a parent bean, baseSer vi ce.

1 <!--The 'baseService' bean contains conmon property definitions for services.-->
2 <bean id="baseService" abstract="true">
3 <property nane="transactionHel per">

4 <ref bean="transacti onHel per"/>
5 </ property>

6 <property nane="dao">

7 <ref bean="dao"/>

8 </ property>

9 <property nanme="registry">

10 <ref bean="basi cRegistry"/>

JPL Java Coding Standard v1.0 March 31, 2014. Page 261

Important rules

11 </ property>

12 </ bean>

13

14 <bean i d="shi ppi ngServi ce"

15 cl ass="docunent ati on. exanpl es. spri ng. Shi ppi ngServi ce"
16 par ent ="baseServi ce">

17 <property nanme="shi ppi ngProvi der" val ue="Federal Parcel Service"/>
18 </ bean>

19

20 <bean id="order Service"

21 cl ass="docunent ati on. exanpl es. spri ng. Or der Servi ce"

22 par ent ="baseServi ce" >

23 <property nane="order Ref erence" val ue="8675309"/>

24 <[/ bean>

References

® Spring Framework Reference Documentation 3.0: 3.4.2.2 References to other beans (collaborators).

JPL Java Coding Standard v1.0 March 31, 2014. Page 262

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-ref-element

Important rules

Ensure that each property in a Spring bean definition has a matching setter

...

Category: Important > Spring

Description: Not declaring a setter for a property that is defined in a Spring XML file causes a compilation
error.

The absence of a matching setter method for a property that is defined in a Spring XML bean causes a validation
error when the project is compiled.

Recommendation

Ensure that there is a setter method in the bean file that matches the property name.

Example

The following example shows a bean file in which there is no match for the setter method that is in the class.

1 <bean id="content Service" class="docunentation.exanpl es. spring. ContentService">
2 <I--BAD: The setter nmethod in the class is 'setHelper', so this property

3 does not match the setter nethod.-->

4 <property nanme="transactionHel per">

5 <ref bean="transacti onHel per"/>

6 </ property>
7 <l bean>

This is the bean class.

1 // bean class
2 public class ContentService {

3 private TransactionHel per hel per;

4

5 /1 This nethod does not match the property in the bean file.
6 public void setHel per(Transacti onHel per hel per) {

7 t hi s. hel per = hel per;

8 }

9}

The property transact i onHel per should instead have the name hel per.

References

® Spring Framework Reference Documentation 3.0: 3.4.1.2 Setter-based dependency injection.

JPL Java Coding Standard v1.0 March 31, 2014. Page 263

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection

Important rules

Put 'import' statements before Spring bean definitions

...

Category: Important > Spring

Description: Putting 'import' statements before bean definitions in a Spring bean configuration file makes
it easier to immediately see all the file's dependencies.

Putting i nport statements at the top of Spring XML bean definition files is good practice because they give a
quick summary of the file's dependencies, and can even be used to document the general architecture of a
system.

Recommendation

Make sure that all i nport statements are at the top of the <beans> section of a Spring XML bean definition file.

Example

The following example shows a <beans> section of a Spring XML bean definition file in which an i nport statement
is in the middle, and a <beans> section in which all the i nport statements are at the top.

1 <beans>

2 <i nport resource="services.xm"/>

3

4 <bean id="beanl" class="..."/>

5 <bean i d="bean2" class="..."/>

6

7 <I--AVO D: Inports in the mddle of a bean configuration nake it difficult
8 to imredi ately determ ne the dependenci es of the configuration-->
9 <i mport resource="resources/ nessageSource.xm "/ >

10

11 <bean id="bean3" class="..."/>

12 <bean i d="bean4" class="..."/>

13 </ beans>

14

15

16 <beans>

17 <I--GO0D: Having the inports at the top inmediately gives an idea of
18 what the dependencies of the configuration are-->

19 <inmport resource="services.xm"/>

20 <i nport resource="resources/ messageSource. xm "/ >

21

22 <bean id="beanl" class="..."/>

23 <bean id="bean2" class="..."/>

24 <bean i d="bean3" class="..."/>

25 <bean i d="bean4" class="..."/>

26 </ beans>

References

® Spring Framework Reference Documentation 3.0: 3.2.2.1 Composing XML-based configuration metadata.

JPL Java Coding Standard v1.0 March 31, 2014. Page 264

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-xml-import

Important rules

Use 'id' instead of 'name' to name a Spring bean

...

Category: Important > Spring

Description: Using 'id' instead of 'name' to name a Spring bean enables the XML parser to perform
additional checks.

To name a Spring bean, it is best to use the i d attribute instead of the nane attribute. Using the i d attribute
enables the XML parser to perform additional checks (for example, checking if the i d in a ref attribute is an
actual i d of an XML element).

Recommendation

Use the i d attribute instead of the nane attribute when naming a bean.

Example

In the following example, the dao bean is shown using the nane attribute, which allows a typo to go undetected
because the XML parser does not check nane. In contrast, using the i d attribute allows the XML parser to catch
the typo.

1 <I--AVO D: Using the 'name' attribute disables checking of bean references at XM parse tine-->
2 <bean nane="dao" cl ass="docunentati on. exanpl es. spri ng. DAO'/ >

3

4 <bean id="orderService" class="docunentation.exanpl es.spring. O derService">
5 <I--The XM parser cannot catch this typo-->

6 <property nane="dao" ref="da0"/>

7 <l bean>

8

9

10 <!--CGO0D: Using the 'id attribute enables checking of bean references at XM. parse tinme-->
11 <bean id="dao" class="docunentation. exanpl es. spring. DAO'/ >

12

13 <bean id="order Service" class="docunentation.exanpl es. spring. O derService">
14 <I--The XM. parser can catch this typo-->

15 <property nane="dao" ref="da0"/>

16 </ bean>

References

® Spring Framework Reference Documentation 3.0: 3.3.1 Naming beans.
* W3C: 3.3.1 Attribute Types.

JPL Java Coding Standard v1.0 March 31, 2014. Page 265

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-beanname
http://www.w3.org/TR/REC-xml/#sec-attribute-types

Important rules

Use a type name instead of an index number in a Spring 'constructor-arg' element

...

Category: Important > Spring

Description: Using a type name instead of an index number in a Spring ‘constructor-arg' element
improves readability.

Using type matching instead of index matching in a Spring const r uct or - ar g element produces a more readable
bean definition and is less vulnerable to being broken by a change to the constructor of the bean's underlying
class. Index matching should be used only if type matching is not sufficient to remove ambiguity in the constructor
arguments.

Recommendation

The bean definition's const ruct or - ar g elements should use type matching instead of index matching.

Example

The following example shows a bean, bi | 1 i ngServi cel, whose const ruct or - ar g elements use index matching,
and an improved version of the bean, bi | 1i ngServi ce2, whose const ruct or - ar g elements use type matching.

1 <!I--AVO D: Using explicit constructor indices nmakes the bean configuration

2 vul nerabl e to changes to the constructor-->

3 <bean id="billingServicel" class="docunentation.exanples.spring.BillingService">
4 <constructor-arg index="0" val ue="John Doe"/>

5 <constructor-arg index="1" ref="dao"/>

6 </bean>

7

8 <!--GO0D: Using type matching nakes the bean configuration nore robust to changes in
9 the constructor-->

10 <bean id="billingService2" class="docunentation.exanples.spring.BillingService">
11 <constructor-arg ref="dao"/>

12 <constructor-arg type="java.lang. String" val ue="Jane Doe"/>

13 </ bean>

References

® Spring Framework Reference Documentation 3.0: 3.4.1.1 Constructor-based dependency injection.
® ONJava: Twelve Best Practices For Spring XML Configurations.

JPL Java Coding Standard v1.0 March 31, 2014. Page 266

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-constructor-injection
http://onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=2

Important rules

Use local references when referring to Spring beans in the same file

...

Category: Important > Spring

Description: Using local references when referring to Spring beans in the same file allows reference
errors to be detected during XML parsing.

If at all possible, refer to Spring beans in the same XML file using local references, that is <i dr ef

| ocal ="t ar get Bean" >. This requires that the bean being referenced is in the same XML file, and is named using
the i d attribute. Using local references has the advantage of allowing reference errors to be detected during XML
parsing, instead of during deployment or instantiation.

From the Spring Framework Reference documentation on i dref elements:

[Using the i dref tag in a property element] is preferable to [using the bean name in the
property's val ue attribute], because using the i dref tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the [nane] property of the client bean.
Typos are only discovered (with most likely fatal results) when the client bean is actually
instantiated. If the client bean is a prototype bean, this typo and the resulting exception may only
be discovered long after the container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean i d,
you can use the | ocal attribute, which allows the XML parser itself to validate the bean i d
earlier, at XML document parse time.

Recommendation

Use a local i dref when referring to beans in the same XML file. This allows errors to be detected earlier, at XML
parse time rather than during instantiation.

Example

In the following example, the shi ppi ngSer vi ce bean is shown using the ref element, which cannot be checked by
the XML parser. The or der Servi ce bean is shown using the i dref element, which allows the XML parser to find
any errors at parse time.

1 <beans>

2 <bean i d="shi ppi ngServi ce" cl ass="docunent ati on. exanpl es. spri ng. Shi ppi ngServi ce">
3 <I--AVO D:. This form of reference cannot be checked by the XM. parser-->

4 <property nanme="dao">

5 <ref bean="dao"/>

6 </ property>

7 </ bean>

8

9 <bean i d="order Servi ce" class="docunentati on. exanpl es. spring. Order Service">

10 <I--GO0D: This formof reference allows the XML parser to find any errors at parse tine-->
11 <property nane="dao">

12 <idref |ocal ="dao"/>

13 </ property>

14 </ bean>

15

16 <bean i d="dao" cl ass="docunentati on. exanpl es. spri ng. DAO'/ >

17 </ beans>

JPL Java Coding Standard v1.0 March 31, 2014. Page 267

Important rules

References

® Spring Framework Reference Documentation 3.0: 3.4.2.1 Straight values (primitives, Strings, and so on).

JPL Java Coding Standard v1.0 March 31, 2014. Page 268

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-value-element

Important rules

Use setter injection instead of constructor injection when using Spring

...

Category: Important > Spring

Description: When using the Spring Framework, using setter injection instead of constructor injection is
more flexible, especially when several properties are optional.

When you use the Spring Framework, using setter injection instead of constructor injection is more flexible,
particularly for Spring beans with a large number of optional properties. Constructor injection should be used only
on required bean properties; using constructor injection on optional bean properties requires a large number of
constructors to handle different combinations of properties.

Although the generally accepted best practice is to use constructor injection for mandatory dependencies, and
setter injection for optional dependencies, the @equi r ed annotation allows you to forgo constructor injection
completely. Using the @equi r ed annotation on a setter method makes the framework check that a dependency is
injected using that method.

Recommendation

Use setter injection in bean configurations, marking required properties with the @equi r ed annotation. It makes it
easier to accommodate a large number of optional properties, and makes the bean more flexible by allowing for
re-injection of dependencies.

Example

The following example shows a bean that is defined using constructor injection. The bean configuration is
followed by the class definition.

1 <!--AVO D: Using constructor args for optional paraneters requires one constructor per conbination
2 of properties. This leads to a | arge nunber of constructors in the bean class.-->
3 <bean id="chart1l" class="docunentati on. exanpl es. spri ng. WongChart Maker">

4 <constructor-arg ref="custonlrend"/>

5 <constructor-arg ref="customAxi s"/>

6 </bean>

1 // dass for bean 'chartl’

2 public class WongChart Maker {

3 private Axi sRenderer axi sRenderer = new Defaul t Axi sRenderer();

4 private TrendRenderer trendRenderer = new Defaul t TrendRenderer();

5

6 public WongChart Maker () {}

7

8 /1 Each conbination of the optional paranmeters nust be represented by a constructor.
9 publ i c WongChart Maker (Axi sRenderer cust omAxi sRenderer) {

10 this. axi sRenderer = customAxi sRenderer;

11 }

12

13 publ i c WongChart Maker (TrendRender er cust onilr endRenderer) {

14 this.trendRenderer = custonlrendRenderer;

15 }

16

17 publ i c WongChart Maker (Axi sRenderer cust omAxi sRenderer,

18 TrendRender er cust onmlr endRenderer) {

19 t hi s. axi sRenderer = cust omAxi sRenderer;

20 this.trendRenderer = custonlrendRenderer;

21 }

22}

The following example shows how the same bean can be defined using setter injection instead. Again, the bean

JPL Java Coding Standard v1.0 March 31, 2014. Page 269

Important rules

configuration is followed by the class definition.

1 <I--CG00D: Using setter injection requires only one setter for each property.-->
2 <bean id="chart?2" class="docunentation.exanpl es.spring. Chart Maker">
3 <property nanme="axi sRenderer" ref="customAxis"/>

4 </ bean>

1 // Cass for bean 'chart2'

2 public class ChartMker {

3 private Axi sRenderer axi sRenderer = new Defaul t Axi sRenderer();

4 private TrendRenderer trendRenderer = new Defaul t TrendRenderer();
5

6 public ChartMker() {}

7

8 public void set Axi sRender er (Axi sRenderer axi sRenderer) {

9 thi s. axi sRenderer = axi sRenderer;

10 }

11

12 public void setTrendRenderer (TrendRenderer trendRenderer) ({

13 this.trendRenderer = trendRenderer;

14 }

15 }

References

® Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern.

® ONJava: Twelve Best Practices for Spring XML Configurations.

® Spring Framework Reference Documentation 3.0: 3.4.1.1 Constructor-based dependency injection, 3.4.1.2
Setter-based dependency injection.

® SpringSource: Setter injection versus constructor injection and the use of @Required.

JPL Java Coding Standard v1.0 March 31, 2014. Page 270

http://martinfowler.com/articles/injection.html
http://www.onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=3
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-constructor-injection
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-setter-injection
http://blog.springsource.org/2007/07/11/setter-injection-versus-constructor-injection-and-the-use-of-required/

Important rules

Use shortcut forms in Spring bean definitions

...

Category: Important > Spring

Description: Using shortcut forms may make a Spring XML configuration file less cluttered.

Shortcut forms, introduced in Spring 1.2, allow nested val ue elements to instead be defined as attributes in the
enclosing property entry. This leads to shorter XML bean configurations that are easier to read.

Recommendation
When possible, use the shortcut form for defining bean property values.

Note that this does not apply to i dref elements, which are the preferred form of referring to another bean. These
do not have a shortcut form that can still be checked by the XML parser.

Example

The following example shows how a bean that is defined using shortcut forms is more concise than the same
bean defined using nested val ue elements.

1 <!--AVO D: Using nested 'value' elenents can nmake the configuration file difficult to read-->
2 <bean id="serviceRegistry" class="docunentati on. exanpl es. spring. Servi ceRegi stry">

3 <constructor-arg type="java.lang. String">

4 <val ue>nmi n_servi ce_regi stry</val ue>

5 </ constructor-arg>

6 <property nane="description">

7 <val ue>Top-l evel registry for services</val ue>

8 </ property>

9 <property name="servi ceMap">

10 <map>

11 <entry>

12 <key>

13 <val ue>or der Servi ce</ val ue>

14 </ key>

15 <val ue>com f 0o. bar. Or der Ser vi ce</ val ue>
16 </entry>

17 <entry>

18 <key>

19 <val ue>bi | I i ngServi ce</val ue>

20 </ key>

21 <val ue>com f 0o. bar. Bi | | i ngSer vi ce</ val ue>
22 </entry>

23 </ map>

24 </ property>

25 </ bean>

26

27

28 <!--@00D: Shortcut forms (Spring 1.2) result in nore concise bean definitions-->
29 <bean id="serviceRegistry" class="docunentation. exanpl es. spring. Servi ceRegi stry">

30 <constructor-arg type="java.lang. String" val ue="nmain_service_registry"/>
31 <property nanme="description" val ue="Top-|evel registry for services"/>
32 <property nanme="servi ceMap">

33 <map>

34 <entry key="order Service" val ue="com f oo. bar. O der Servi ce"/>

35 <entry key="billingService" val ue="com foo.bar.BillingService"/>
36 </ map>

37 </ property>

38 </bean>

JPL Java Coding Standard v1.0 March 31, 2014. Page 271

Important rules

References

® ONJava: Twelve Best Practices for Spring XML Configurations.
® Spring Framework Reference Documentation 3.0: 3.4.2.1 Straight values (primitives, Strings, and so on).

JPL Java Coding Standard v1.0 March 31, 2014. Page 272

http://www.onjava.com/pub/a/onjava/2006/01/25/spring-xml-configuration-best-practices.html?page=1
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-value-element

Important rules

Strings (1)

® Avoid calling 'toString’ on a string
® Avoid calling 'toUpperCase()' or 'toLowerCase()" without specifying the locale

JPL Java Coding Standard v1.0 March 31, 2014. Page 273

Important rules

Avoid calling 'toString' on a string

...

Category: Important > Strings (1)

Description: Calling 'toString' on a string is redundant.

There is no need to call toStri ng on a Stri ng because it just returns the object itself. From the Java API
Specification entry for String. toString():

public String toString()
This object (which is already a string!) is itself returned.

Recommendation

Do not call toString on a Stri ng object.

Example

The following example shows an unnecessary call to t oSt ri ng on the string nane.

1 public static void main(String args[]) {

2 String name = "John Doe";

3

4 /1 BAD: Unnecessary call to 'toString' on 'nane'

5 Systemout.println("H, ny name is " + nanme.toString());
6

7 // GOOD: No call to '"toString' on 'nane'

8 Systemout.printin("H , ny name is " + nane);

9 }

References

® Java 6 API Specification: String.toString().

JPL Java Coding Standard v1.0 March 31, 2014. Page 274

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#toString()

Important rules

Avoid calling 'toUpperCase()' or 'toLowerCase()' without specifying the locale

...

Category: Important > Strings (1)

Description: Calling 'String.toUpperCase()' or 'String.toLowerCase()' without specifying the locale may
cause unexpected results for certain default locales.

The parameterless versions of String. t oUpper Case() and String. t oLower Case() use the default locale of the Java
Virtual Machine when transforming strings. This can cause unexpected behavior for certain locales.

Recommendation

Use the corresponding methods with explicit locale parameters to ensure that the results are consistent across all
locales. For example:

Systemout.println("l".toLowerCase(java.util.Local e. ENGISH));

prints i , regardless of the default locale.

Example

In the following example, the calls to the parameterless functions may return different strings for different locales.
For example, if the default locale is ENGLISH, the function t oLower Case() converts a capital | to i ; if the default
locale is TURKISH, the function t oLower Case() converts a capital | to the Unicode Character "Latin small letter
dotless i" (U+0131) (Turkish HTML Codes, Unicode Hexadecimal & HTML Names).

To ensure that an English string is returned, regardless of the default locale, the example shows how to call
t oLover Case and pass | ocal e. ENGLI SH as the argument. (This assumes that the text is English. If the text is
Turkish, you should pass | ocal e. TURKI SH as the argument.)

1 public static void main(String args[]) {

2 String phrase = "I miss ny hone in Mssissippi.";

3

4 // AVO D: Calling 'toLowerCase()' or 'toUpperCase()'

5 /'l produces different results depending on what the default locale is.
6 System out . println(phrase.toUpperCase());

7 System out . println(phrase.tolLowerCase());

8

9 /] GOOD: Explicitly setting the locale when calling 'toLowerCase()' or
10 /1 'toUpperCase()' ensures that the resulting string is

11 /1 English, regardless of the default |ocale.

12 System out. printl n(phrase.tolLower Case(Local e. ENGLI SH)) ;

13 System out . printl n(phrase.toUpper Case(Local e. ENGLI SH)) ;

14}

References

® Java API Documentation: String.toUpperCase().

JPL Java Coding Standard v1.0 March 31, 2014. Page 275

http://character-code.com/turkish-html-codes.php
http://java.sun.com/javase/6/docs/api/java/lang/String.html#toUpperCase()

Important rules

Swing

® Avoid calling Swing methods from a thread other than the event-dispatching thread
® Ensure that event handler overrides have exactly the right name

JPL Java Coding Standard v1.0 March 31, 2014. Page 276

Important rules

Avoid calling Swing methods from a thread other than the event-dispatching thread

...

Category: Important > Swing

Description: Calling Swing methods from a thread other than the event-dispatching thread may result in
multi-threading errors.

Because Swing components are not thread-safe (that is, they do not support concurrent access from multiple
threads), Swing has a rule that states that method calls on Swing components that have been realized (see
below) must be made from a special thread known as the event-dispatching thread. Failure to observe this rule
may result in multiple threads accessing a Swing component concurrently, with the potential for deadlocks, race
conditions and other errors related to multi-threading.

A component is considered realized if its pai nt method has been, or could be, called at this point. Realization is
triggered according to the following rules:

® A top-level window is realized if set Vi si bl e(true), showOr pack is called on it.
® Realizing a container realizes the components it contains.

There are a few exceptions to the rule. These are documented more fully in [The Swing Connection] but the key
exceptions are:

® |tis safe to call the repaint, reval i date and i nval i dat e methods on a Swing component from any thread.
® |tis safe to add and remove listeners from any thread. Therefore, any method of the form add*Li st ener or
remove* Li st ener is thread-safe.

Recommendation

Ensure that method calls on Swing components are made from the event-dispatching thread. If you need to call a
method on a Swing component from another thread, you must do so using the event-dispatching thread. Swing
provides a swi ngutilities class that you can use to ask the event-dispatching thread to run arbitrary code on
your components, by calling one of two methods. Each method takes a Runnabl e as its only argument:

® sSwingUilities.invokeLater asks the event-dispatching thread to run some code and then immediately
returns (that is, it is non-blocking). The code is run at some indeterminate time in the future, but the thread
that calls i nvokeLat er does not wait for it.

® SwingUtilities.invokeAndwait asks the event-dispatching thread to run some code and then waits for it to
complete (that is, it is blocking).

Example

In the following example, there is a call from the main thread to a method, set Ti t1 e, on the M/Fr ane oObject after
the object has been realized by the set Vi si bl e(true) call. This represents an unsafe call to a Swing method from
a thread other than the event-dispatching thread.

1 class MyFrane extends JFrane {

2 public MyFrame() {

3 set Si ze(640, 480);

4 set Titl e(" BrokenSwi ng");

5 }

6}

7

8 public class BrokenSw ng {

9 private static void doStuff(MFrane frane) {
10 // BAD: Direct call to a Swing conmponent after it has been realized
11 frame.setTitle("Title");

12 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 277

Important rules

13

14 public static void main(String[] args) {
15 MyFranme frane = new MyFrane();

16 frame.setVisible(true);

17 doSt uf f (frame);

18 }

19 }

In the following modified example, the call to set Ti t| e is instead called from within a call to i nvokeLat er.

1 class MyFrame extends JFrame {

2 public MyFranme() {

3 set Si ze(640, 480);

4 setTitle("BrokenSw ng");

5 }

6 }

7

8 public class GoodSwi ng {

9 private static void doStuff(final MyFrane frame) {
10 SwingUtilities.invokeLater(new Runnable() {
11 public void run() {

12 /] GOOD: Call to Swing conmponent made via the
13 /'l event-dispatching thread using 'invokeLater'
14 frame.setTitle("Title");

15 }

16 b

17 }

18

19 public static void main(String[] args) {

20 M/Frane frane = new MyFrane();

21 frame.setVisible(true);

22 doStuff (frame);

23 }

24}

References

D. Flanagan, Java Foundation Classes in a Nutshell, p.28. O'Reilly, 1999.
Java Developer's Journal: Building Thread-Safe GUIs with Swing.

The Java Tutorials: Concurrency in Swing.

The Swing Connection: Threads and Swing.

JPL Java Coding Standard v1.0 March 31, 2014. Page 278

http://www2.sys-con.com/itsg/virtualcd/java/archives/0605/ford/index.html
http://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html
http://www.comp.nus.edu.sg/~cs3283/ftp/Java/swingConnect/archive/tech_topics_arch/threads/threads.html

Important rules

Ensure that event handler overrides have exactly the right name

...

Category: Important > Swing

Description: In a class that extends a Swing or Abstract Window Toolkit event adapter, an event handler
that does not have exactly the same name as the event handler that it overrides means that the overridden |
event handler is not called. '

Event adapters in Swing (and Abstract Window Toolkit) provide a convenient way for programmers to implement
event listeners. However, care must be taken to get the names of the overridden methods right, or the event
handlers will not be called.

In Depth

The event listener interfaces in Swing (and Abstract Window Toolkit) have many methods. For example,
java. awt . event . MouselLi st ener is defined as follows:

1 public interface Muselistener extends EventListener {
2 public abstract void moused i cked(MyuseEvent);

3 public abstract void nmousePressed(MuseEvent);

4 public abstract void nouseRel eased(MuseEvent);

5 public abstract void nouseEntered(MuseEvent);

6 public abstract void nmouseExited(MuseEvent);

7

}

The large number of methods can make such interfaces lengthy and tedious to implement, especially because it
is rare that all of the methods need to be overridden. It is much more common that you need to override only one
method, for example the nmoused i cked event.

For this reason, Swing supplies adapter classes that provide default, blank implementations of interface methods.
An example is MuseAdapt er , which provides default implementations for the methods in MuselLi st ener,
MouseWheel Li st ener and MuseMt i onLi st ener . (Note that an adapter often implements multiple interfaces to avoid
a large number of small adapter classes.) This makes it easy for programmers to implement just the methods
they need from a given interface.

Unfortunately, adapter classes are also a source of potential defects. Because the @verri de annotation is not
compulsory, it is very easy for programmers not to use it and then mistype the name of the method. This
introduces a new method rather than implementing the relevant event handler.

Recommendation

Ensure that any overriding methods have exactly the same name as the overridden method.

Example

In the following example, the programmer has tried to implement the moused i cked function but has misspelled the
function name. This makes the function inoperable but the programmer gets no warning about this from the
compiler.

1 add(new MouseAdapter () {

2 public void noused ickd(MuseEvent e) {
3 /1

4 }

5 1)

In the following modified example, the function name is spelled correctly. It is also preceded by the @verri de
annotation, which will cause the compiler to display an error if there is not a function of the same name to be

JPL Java Coding Standard v1.0 March 31, 2014. Page 279

Important rules

overridden.

1 add(new MouseAdapter() {

2 @verride

3 public void noused icked(MuseEvent e) {
4 /1

5 }

6 1)

References

® D. Flanagan, Java Foundation Classes in a Nutshell, Chapter 26. O'Reilly, 1999.
® Java Platform, Standard Edition 7, API Specification: Annotation Type Override.
® The Java Tutorials: Event Adapters.

JPL Java Coding Standard v1.0 March 31, 2014. Page 280

http://docs.oracle.com/javase/7/docs/api/java/lang/Override.html
http://docs.oracle.com/javase/tutorial/uiswing/events/generalrules.html#eventAdapters

Important rules

Types (2)

® Avoid naming a type variable the same as another type that is in scope
® Avoid trying to extend a final type using a wildcard
® Do not call a varargs method with an ambiguous argument

JPL Java Coding Standard v1.0 March 31, 2014. Page 281

Important rules

Avoid naming a type variable the same as another type that is in scope

...

Category: Important > Types (2)

Description: A type variable with the same name as another type that is in scope can cause the two types
to be confused. :

Type shadowing occurs if two types have the same name but one is defined within the scope of the other. This
can arise if you introduce a type variable with the same name as an imported class.

Type shadowing may cause the two types to be confused, which can lead to various problems.

Recommendation

Name the type variable so that its name does not clash with the imported class.

Example

In the following example, the type j ava. util. Map. Entry is imported at the top of the file, but the class Mappi ng is
defined with two type variables, key and Ent ry. Uses of Ent ry within the Mappi ng class refer to the type variable,
and not the imported interface. The type variable therefore shadows Map. Entry.

i mport java.util.Mp;
import java.util.Mp. Entry;

{

1
2
3
4 class Mappi ng<Key, Entry> // The type variable 'Entry' shadows the inported interface 'Entry'.
5
6 ...

7

}
To fix the code, the type variable Entry on line 4 should be renamed.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 6.4 Shadowing and Obscuring.

JPL Java Coding Standard v1.0 March 31, 2014. Page 282

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4

Important rules

Avoid trying to extend a final type using a wildcard

...

Category: Important > Types (2)

Description: If 'C' is a final class, a type bound such as '? extends C' is confusing because it implies that
'C' has subclasses, but a final class has no subclasses.

A type wildcard with an ext ends clause (for example ? extends String) implicitly suggests that a type (in this case
string) has subclasses. If the type in the ext ends clause is final, the code is confusing because a final class
cannot have any subclasses. The only type that satisfies ? extends String iS String.

Recommendation

To make the code more readable, omit the wildcard to leave just the final type.

Example

In the following example, a wildcard is used to refer to any type that is a subclass of String.
1 class Printer

2 A

3 void print(List<? extends String> strings) { // Unnecessary wildcard
4 for (String s : strings)

5 System out. println(s);

6

7

}

However, because string is declared fi nal , it does not have any subclasses. Therefore, it is clearer to replace
? extends String Wwith String.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 4.5.1 Type Arguments and Wildcards, 8.1.1.2 final Classes.

JPL Java Coding Standard v1.0 March 31, 2014. Page 283

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.5.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.1.2

Important rules

Do not call a varargs method with an ambiguous argument

...

Category: Important > Types (2)

Description: Calling a varargs method where is is unclear whether the arguments should be interpreted
as a list of arguments or as a single argument, may lead to compiler-dependent behavior.

A variable arity method, commonly known as a varargs method, may be called with different numbers of
arguments. For example, the method sun(int... val ues) may be called in all of the following ways:

sun()

sun(1)

sum(1, 2, 3)

sum(new int[] { 1, 2, 31})

When a method foo(T... x) is called with an argument that is neither T nor T[], but the argument can be cast as
either, the choice of which type the argument is cast as is compiler-dependent.

Recommendation

When a variable arity method, for example m(T... ts), is called with a single argument (for example n{ arg)), the
type of the argument should be either T or T[] (insert a cast if necessary).

Example

In the following example, the calls to | engt h do not pass an argument of the same type as the parameter of
I engt h, which is j ect or an array of j ect . Therefore, when the program is compiled with javac, the output is:

3
2

When the program is compiled with a different compiler, for example the default compiler for some versions of
Eclipse, the output may be:

3

1

1 class |nexactVarArg

2 A

3 private static void | ength(Object... objects) {

4 System out . println(objects.|ength);

5 }

6

7 public static void main(String[] args) {

8 String[] words = { "apple", "banana", "cherry" };
9 String[][] lists = { words, words };

10 | engt h(words); // BAD: Argunent does not clarify
11 length(lists); // which paranmeter type is used.
12 }

13 }

To fix the code, I engt h(wor ds) should be replaced by either of the following:

® Iength((Object) words)
® length((Object[]) words)

Similarly, 1 engt h(1i sts) should be replaced by one of the following:

JPL Java Coding Standard v1.0 March 31, 2014. Page 284

Important rules
® length((Object) lists)
® length((Object[]) Iists)

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification: 8.4.1 Formal Parameters, 15.12.4.2 Evaluate Arguments.

JPL Java Coding Standard v1.0 March 31, 2014. Page 285

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12.4.2

Important rules

Useless Code

Avoid futile assignments to a local variable

Avoid local variables that are never read

Avoid redundant types

Avoid unnecessary 'import' statements

Avoid unnecessary casts

Avoid unused fields

Avoid unused labels

Ensure that fields are explicitly initialized

Ensure that interface methods are compatible with ‘java.lang.Object’

JPL Java Coding Standard v1.0 March 31, 2014. Page 286

Important rules

Avoid futile assignments to a local variable

...

Category: Important > Useless Code

Description: An assignment to a local variable that is not used before a further assignment is made has
no effect.

A value is assigned to a local variable, but whenever the variable is subsequently read, there has been at least
one other assignment to that variable. This means that the original assignment is suspect, because the state of
the local variable that it creates is never used.

Recommendation

Ensure that you check the control and data flow in the method carefully. If a value is really not needed, consider
omitting the assignment. Be careful, though: if the right-hand side has a side-effect (like performing a method
call), it is important to keep this to preserve the overall behavior.

Example

In the following example, the value assigned to resul t on line 5 is always overwritten (line 6) before being read
(line 7). This is a strong indicator that there is something wrong. By examining the code, we can see that the loop
in lines 3-5 seems to be left over from an old way of storing the list of persons, and line 6 represents the new (and
better-performing) way. Consequently, we can delete lines 3-5 while preserving behavior.

1 Person find(String nane) {

2 Person result;

3 for (Person p : people.values())

4 if (p.getNane().equal s(nane))

5 result = p; // Redundant assignnent
6 result = peopl e. get (nane);
7 return result;

JPL Java Coding Standard v1.0 March 31, 2014. Page 287

Important rules

Avoid local variables that are never read

...

Category: Important > Useless Code

Description: A local variable that is never read is redundant.

A local variable that is never read is useless.

As a matter of good practice, there should be no unused or useless code. It makes the program more difficult to
understand and maintain, and can waste a programmer's time.

Recommendation

This rule applies to variables that are never used as well as variables that are only written to but never read. In
both cases, ensure that no operations are missing that would use the local variable. If appropriate, simply remove
the declaration. However, if the variable is written to, ensure that any side-effects in the assignments are
retained. (For further details, see the example.)

Example

In the following example, the local variable ol dQuanti ty is assigned a value but never read. In the fixed version of
the example, the variable is removed but the call to i t ens. put in the assignment is retained.

1 // Version containing unread |ocal variable
2 public class Cart {

3 private Map<item Integer> itens = ...;
4 public void add(ltemi) {

5 Integer quantity = items.get(i);

6 if (quantity = null)

7 quantity = 1;

8

9

el se
quantity++;
10 Integer oldQuantity = itens.put(i, quantity); // AVOD: Unread |ocal variable
11 }
12}
13

14 // Version with unread |ocal variable renpved
15 public class Cart {

16 private Map<item Integer> itenms = ...;
17 public void add(ltemi) {

18 Integer quantity = itens.get(i);
19 if (quantity = null)

20 quantity = 1;

21 el se

22 quantity++;

23 items.put(i, quantity);

24 }

25 }

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 288

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid redundant types

Category: Important > Useless Code

Description: A non-public class or interface that is not used anywhere in the program wastes programmer 5
resources.

A non-public class or interface that is not used anywhere in the program may cause a programmer to waste time
and effort maintaining and documenting it.

Recommendation
Ensure that redundant types are removed from the program.
References

® Wikipedia: Unreachable code.

JPL Java Coding Standard v1.0 March 31, 2014. Page 289

http://en.wikipedia.org/wiki/Unreachable_code

Important rules

Avoid unnecessary 'import' statements

...

Category: Important > Useless Code

Description: A redundant 'import' statement introduces unnecessary and undesirable dependencies.

...

An i nport statement that is not necessary (because no part of the file that it is in uses any imported type) should
be avoided. Although importing too many types does not affect performance, redundant i nport statements
introduce unnecessary and undesirable dependencies in the code. If an imported type is renamed or deleted, the
source code cannot be compiled because the i nport statement cannot be resolved.

Unnecessary i nport Statements are often an indication of incomplete refactoring.

Recommendation

Avoid including an i nport statement that is not needed. Many modern IDEs have automated support for doing
this, typically under the name 'Organize imports'. This sorts the i nport statements and removes any that are not
used, and it is good practice to run such a command before every commit.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 290

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid unnecessary casts

...

Category: Important > Useless Code

Description: Casting an object to its own type is unnecessary.

...

A cast is unnecessary if the type of the operand is already the same as the type that is being cast to.

Recommendation

Avoid including unnecessary casts.

Example

In the following example, casting i to an I nt eger is not necessary. It is already an | nt eger .

1 public class UnnecessaryCast {

2 public static void main(String[] args) {

3 Integer i = 23;

4 Integer j = (Integer)i; // AVOD: Redundant cast
5 }

6 }

To fix the code, delete (1 nteger) on the right-hand side of the assignment on line 4.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 291

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid unused fields

...

Category: Important > Useless Code

Description: A field that is never used is probably unnecessary.

...

A field that is neither public nor protected and never accessed is typically a leftover from old refactorings or a sign
of incomplete or pending code changes.

This rule does not apply to a field in a serializable class because it may be accessed during serialization and
deserialization.

Recommendation

If an unused field is a leftover from old refactorings, you should just remove it. If it indicates incomplete or
pending code changes, finish making the changes and remove the field if it is not needed.

References

®* Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 292

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Avoid unused labels

...

Category: Important > Useless Code

Description: An unused label for a loop or 'switch' statement is either redundant or indicates incorrect
‘break’ or 'continue' statements.

Loop and swi t ch statements can be labeled. These labels can serve as targets for break Or conti nue statements,
to specify which loop or swi t ch statement they refer to.

Apart from serving as such jump targets, the labels have no effect on program behavior, which means that having
an unused label is suspicious.

Recommendation

If the label is used to document the intended behavior of a loop or swi t ch statement, remove it. It is better to use
comments for this purpose. However, an unused label may indicate that something is wrong: that some of the
nested break Or conti nue statements should be using the label. In this case, the current control flow is probably
wrong, and you should adjust some jumps to use the label after checking the desired behavior.

Example

The following example uses a loop and a nested loop to check whether any of the currently active shopping carts
contains a particular item. On line 4, the carts: label is unused. Inspecting the code, we can see that the br eak
statement on line 10 is inefficient because it only breaks out of the nested loop. It could in fact break out of the
outer loop, which should improve performance in common cases. By changing the statement on line 10 to read
break carts;, the label is no longer unused and we improve the code.

1 public class WbStore {

2 public bool ean item sBei ngBought(ltemiten) {

3 bool ean found = fal se;

4 carts: // AVAO D Unused | abel

5 for (int i =0; i < carts.size(); i++) {

6 Cart cart = carts.get(i);

7 for (int j =0; j <cart.numtens(); j++) {
8 if (itemequals(cart.getlten(j))) {
9 found = true;

10 br eak;

11 }

12 }

13 }

14 return found,

15 }

16 }

References

®* Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.

JPL Java Coding Standard v1.0 March 31, 2014. Page 293

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm

Important rules

Ensure that fields are explicitly initialized

...

Category: Important > Useless Code

Description: A field that is never assigned a value (except possibly 'null’) just returns the default value
when it is read.

It is good practice to initialize every field in a constructor explicitly. A field that is never assigned any value
(except possibly nul 1) just returns the default value when it is read, or throws a Nul | Poi nt er Except i on.

Recommendation

A field whose value is always nul | (or the corresponding default value for primitive types, for example 0) is not
particularly useful. Ensure that the code contains an assignment or initialization for each field. To help satisfy this
rule, it is good practice to explicitly initialize every field in the constructor, even if the default value is acceptable.

If the field is genuinely never expected to hold a hon-default value, check the statements that read the field and
ensure that they are not making incorrect assumptions about the value of the field. Consider completely removing
the field and rewriting the statements that read it, as appropriate.

Example

In the following example, the private field nare is not initialized in the constructor (and thus is implicitly set to nul |
), but there is a getter method to access it.

1 class Person {
2 private String nane;

3 private int age;

4

5 public Person(String nane, int age) {
6 this.age = age;

7 }

8

9 public String getNanme() {
10 return nane;

11 }

12

13 public int getAge() {

14 return age;

15 }

16 }

Therefore, the following code throws a Nul | Poi nt er Except i on:

1 Person p = new Person("Arthur Dent", 30);
2 int | = p.getNanme().length();

To fix the code, nane should be initialized in the constructor by adding the following line: t hi s. nanme = nane;

JPL Java Coding Standard v1.0 March 31, 2014. Page 294

Important rules

Ensure that interface methods are compatible with 'java.lang.Object’

...

Category: Important > Useless Code

Description: An interface method that is incompatible with a protected method on ‘java.lang.Object'
means that the interface cannot be implemented.

An interface that contains methods whose return types clash with protected methods on j ava. | ang. Gbj ect can
never be implemented, because methods cannot be overloaded based simply on their return type.

Recommendation

If the interface is useful, name methods so that they do not clash with methods in aj ect . Otherwise you should
delete the interface.

Example

In the following example, the interface | is useless because the cl one method must return type j ava. | ang. vj ect :

interface | {
int clone();

}

public int clone() {
return 23;

1

2

3

4

5 class Cinplenments | {
6

7

8 }

9

}

Any attempt to implement the interface produces an error:

I nt er f aceCannot Bel npl enent ed. j ava: 6: clone() in C cannot override
clone() in java.lang. Object; attenpting to use inconpatible return
type

f ound cint

required: java.lang.bject
public int clone() {

N

1 error

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Language Specification, Third Edition: 9.2 Interface Members.

JPL Java Coding Standard v1.0 March 31, 2014. Page 295

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/specs/jls/se5.0/html/interfaces.html

Advisory rules

Advisory
Rules in this category represent good practice. Violations of these rules are allowed but not recommended.
Rule types:

® Declarations (1)

® Deprecated Code

® Documentation

® Java Objects (1)

® Naming (1)

® Statements

® Types (1)

JPL Java Coding Standard v1.0 March 31, 2014. Page 296

Advisory rules

Declarations (1)

® Avoid implicit imports

® Declare immutable fields ‘final’

® Do not make mutable fields public

® Use '@Override' annotation when overriding a method

JPL Java Coding Standard v1.0 March 31, 2014. Page 297

Advisory rules

Avoid implicit imports

...

Category: Advisory > Declarations (1)

Description: An implicit import obscures the dependencies of a file and may cause confusing
compile-time errors.

Imports can be categorized as explicit (for example i nport java. util. List;) or implicit (also known as
‘on-demand’, for example i nport java.util.*;):

® Implicit imports give access to all visible types in the type (or package) that precedes the ".*"; types
imported in this way never shadow other types.

® Explicit imports give access to just the named type; they can shadow other types that would normally be
visible through an implicit import, or through the normal package visibility rules.

It is often considered bad practice to use implicit imports. The only advantage to doing so is making the code
more concise, and there are a number of disadvantages:

® The exact dependencies of a file are not visible at a glance.
® Confusing compile-time errors can be introduced if a type name is used that could originate from several
implicit imports.

Recommendation

For readability, it is recommended to use explicit imports instead of implicit imports. Many modern IDEs provide
automatic functionality to help achieve this, typically under the name "Organize imports". They can also fold away
the import declarations, and automatically manage imports: adding them when a particular type is auto-completed
by the editor, and removing them when they are not necessary. This functionality makes implicit imports mainly
redundant.

Example

The following example uses implicit imports. This means that it is not clear to a programmer where the Li st type
on line 5 is imported from.

1 inport java.util.*; // AVOD: Inplicit inport statenents

2 inmport java.awt.*;

3

4 public class Custoners {

5 public List getCustoners() { // Conpiler error: 'List' is anbiguous.
6

7 }

8}

To improve readability, the implicit imports should be replaced by explicit imports. For example, i nport
java.util.*; should be replaced by i nport java.util.List; online 1.

References

® Java Language Specification: 6.4.1 Shadowing, 7.5.2 Type-Import-on-Demand Declarations.

JPL Java Coding Standard v1.0 March 31, 2014. Page 298

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.4.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-7.html#jls-7.5.2

Advisory rules

Declare immutable fields 'final'

...

Category: Advisory > Declarations (1)

Description: A field of immutable type that is assigned to only in a constructor or static initializer of its
declaring type, but is not declared ‘final’, may lead to defects and makes code less readable.

A field of immutable type that is not declared fi nal , but is assigned to only in a constructor or static initializer of
its declaring type, may lead to defects and makes code less readable. This is because other parts of the code
may be based on the assumption that the field has a constant value, and a later modification, which includes an
assignment to the field, may invalidate this assumption.

Recommendation

If a field of immutable type is assigned to only during class or instance initialization, you should usually declare it
final . This forces the compiler to verify that the field value cannot be changed subsequently, which can help to

avoid defects and increase code readability.

References

® Java Language Specification: 4.12.4 final Variables, 8.3.1.2 final Fields.

JPL Java Coding Standard v1.0 March 31, 2014. Page 299

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.4
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.3.1.2

Advisory rules

Do not make mutable fields public

...

Category: Advisory > Declarations (1)

Description: A non-constant field that is not declared 'private’, but is not accessed outside of its declaring
type, may decrease code maintainability.

A non-final or non-static field that is not declared pri vat e, but is not accessed outside of its declaring type, may
decrease code maintainability. This is because a field that is accessible from outside the class that it is declared
in tends to restrict the class to a particular implementation.

Recommendation

In the spirit of encapsulation, it is generally advisable to choose the most restrictive access modifier (pri vat e) for
a field, unless there is a good reason to increase its visibility.

References

* J. Bloch, Effective Java (second edition), ltem 13. Addison-Wesley, 2008.
® The Java Tutorials: Controlling Access to Members of a Class.

JPL Java Coding Standard v1.0 March 31, 2014. Page 300

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Advisory rules

Use '@Override' annotation when overriding a method

...

Category: Advisory > Declarations (1)

Description: A method that overrides a method in a superclass but does not have an ‘Override’ annotation
cannot take advantage of compiler checks, and makes code less readable. :

Java enables you to annotate methods that are intended to override a method in a superclass. Compilers are
required to generate an error if such an annotated method does not override a method in a superclass, which
provides increased protection from potential defects. An annotated method also improves code readability.

Recommendation

Add an @verri de annotation to a method that is intended to override a method in a superclass.

Example

In the following example, Tri angl e. get Ar ea Overrides Rect angl e. get Ar ea, SO it is annotated with @verri de.

1 class Rectangle

2 {

3 private int w= 10, h = 10;

4 public int getArea() {

5 return w * h;

6 }

7}

8

9 class Triangle extends Rectangle

10 {

11 @wverride // Annotation of an overriding nethod

12 public int getArea() {

13 return super.getArea() / 2;

14 }

15 }

References
* J. Bloch, Effective Java (second edition), ltem 36. Addison-Wesley, 2008.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Platform, Standard Edition 6, API Specification: Annotation Type Override.
[}

The Java Tutorials: Predefined Annotation Types.

JPL Java Coding Standard v1.0 March 31, 2014. Page 301

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Override.html
http://docs.oracle.com/javase/tutorial/java/annotations/predefined.html

Advisory rules

Deprecated Code

® Avoid using a deprecated method or constructor

JPL Java Coding Standard v1.0 March 31, 2014. Page 302

Advisory rules

Avoid using a deprecated method or constructor

...

Category: Advisory > Deprecated Code

Description: Using a method or constructor that has been marked as deprecated may be dangerous or
fail to take advantage of a better method or constructor.

A method (or constructor) can be marked as deprecated using either the @epr ecat ed annotation or the
@lepr ecat ed Javadoc tag. Using a method that has been marked as deprecated is bad practice, typically for one
or more of the following reasons:

® The method is dangerous.

® There is a better alternative method.

® Methods that are marked as deprecated are often removed from future versions of an API. So using a
deprecated method may cause extra maintenance effort when the API is upgraded.

Recommendation

Avoid using a method that has been marked as deprecated. Follow any guidance that is provided with the
@lepr ecat ed Javadoc tag, which should explain how to replace the call to the deprecated method.

References

® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® Java Platform, Standard Edition 6, API Specification: Annotation Type Deprecated.
® Java SE Documentation: How and When To Deprecate APIs.

JPL Java Coding Standard v1.0 March 31, 2014. Page 303

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/6/docs/api/java/lang/Deprecated.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javadoc/deprecation/deprecation.html

Advisory rules

Documentation

Include a Javadoc comment for each public class or interface

Include a Javadoc comment for each public method or constructor

Include a Javadoc tag for each exception thrown by a public method or constructor
Include a Javadoc tag for each parameter of a public method or constructor
Include a Javadoc tag for the return value of a public method or constructor

JPL Java Coding Standard v1.0 March 31, 2014. Page 304

Advisory rules

Include a Javadoc comment for each public class or interface

...

Category: Advisory > Documentation

Description: A public class or interface that does not have a Javadoc comment affects maintainability.

...

A public class or interface that does not have a Javadoc comment makes an APl more difficult to understand and
maintain.

Recommendation

Public classes and interfaces should be documented to make an API usable. For the purpose of code
maintainability, it is also advisable to document non-public classes and interfaces.

Documentation for users of an API should be written using the standard Javadoc format. This can be accessed
conveniently by users of an API from within standard IDEs, and can be transformed automatically into HTML
format.

Example

The following example shows a good Javadoc comment, which clearly explains what the class does, its author,
and version.

*

/
The Stack class represents a last-in-first-out stack of objects.

@ut hor Joseph Bergin

@ersion 1.0, May 2000

Note that this version is not thread safe.
/

public class Stack {

11

¥k Ok k¥ ok F

© oo ~NOOOWDNLPE

References

® J. Bloch, Effective Java (second edition), ltem 44. Addison-Wesley, 2008.

® Help - Eclipse Platform: Java Compiler Javadoc Preferences.

® Java SE Documentation: How to Write Doc Comments for the Javadoc Tool, Requirements for Writing
Java API Specifications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 305

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

Include a Javadoc comment for each public method or constructor

...

Category: Advisory > Documentation

Description: A public method or constructor that does not have a Javadoc comment affects
maintainability.

A public method or constructor that does not have a Javadoc comment makes an API more difficult to understand
and maintain.

Recommendation

Public methods and constructors should be documented to make an API usable. For the purpose of code
maintainability, it is also advisable to document non-public methods and constructors.

The Javadoc comment should describe what the method or constructor does rather than how, to allow for any
potential implementation change that is invisible to users of an API. It should include the following:

® A description of any preconditions or postconditions
® Javadoc tag elements that describe any parameters, return value, and thrown exceptions
® Any other important aspects such as side-effects and thread safety

Documentation for users of an API should be written using the standard Javadoc format. This can be accessed
conveniently by users of an API from within standard IDEs, and can be transformed automatically into HTML
format.

Example

The following example shows a good Javadoc comment, which clearly explains what the method does, its
parameter, return value, and thrown exception.

l /**

2 * Extracts the user's nanme fromthe input argunents.

3 *

4 * Precondition: 'args' should contain at |east one elenent, the user's nane.
5 *

6 * @aram args t he command-1ine argunents.

7 * @eturn the user's nanme (the first command-line argunent).
8 * @hrows NoNaneException if 'args' contains no el enent.

9 */

10 public static String getName(String[] args) throws NoNaneException {

11 if(args.length == 0) {

12 t hrow new NoNaneException();

13 } else {

14 return args[0];

15 }

16 }

References

* J. Bloch, Effective Java (second edition), Iltem 44. Addison-Wesley, 2008.

® Help - Eclipse Platform: Java Compiler Javadoc Preferences.

® Java SE Documentation: How to Write Doc Comments for the Javadoc Tool, Requirements for Writing
Java API Specifications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 306

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

Include a Javadoc tag for each exception thrown by a public method or constructor

...

Category: Advisory > Documentation

Description: A public method or constructor that throws an exception but does not have a Javadoc tag for
the exception affects maintainability. :

A public method or constructor that throws an exception but does not have a Javadoc tag for the exception
makes an AP| more difficult to understand and maintain. This includes checked exceptions in t hr ows clauses and
unchecked exceptions that are explicitly thrown in t hr ow Statements.

Recommendation

The Javadoc comment for a method or constructor should include a Javadoc tag element that describes each
thrown exception.

Example

The following example shows a good Javadoc comment, which clearly explains the method's thrown exception.

l /**

2 * Extracts the user's name fromthe input argunents.

3 *

4 * Precondition: 'args' should contain at |east one elenent, the user's nane.
5 *

6 * @aram args t he command-1ine argunents.

7 * @eturn the user's nane (the first commuand-|ine argunent).
8 * @hrows NoNaneException if 'args' contains no el enent.

9 =/

10 public static String getNane(String[] args) throws NoNanmeException {

11 if(args.length == 0) {

12 t hrow new NoNaneException();

13 } else {

14 return args[0];

15 }

16 }

References

® J. Bloch, Effective Java (second edition), Iltems 44 and 62. Addison-Wesley, 2008.

® Help - Eclipse Platform: Java Compiler Javadoc Preferences.

® Java SE Documentation: How to Write Doc Comments for the Javadoc Tool, Requirements for Writing
Java API Specifications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 307

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

Include a Javadoc tag for each parameter of a public method or constructor

...

Category: Advisory > Documentation

Description: A public method or constructor that does not have a Javadoc tag for each parameter affects
maintainability.

A public method or constructor that does not have a Javadoc tag for each parameter makes an APl more difficult
to understand and maintain.

Recommendation

The Javadoc comment for a method or constructor should include a Javadoc tag element that describes each
parameter.

Example

The following example shows a good Javadoc comment, which clearly explains the method's parameter.

l /**

2 * Extracts the user's nanme fromthe input argunents.

3 *

4 * Precondition: "args' should contain at |east one elenment, the user's nane.
5 *

6 * @aram args the command-1ine arguments.

7 * @eturn the user's nane (the first comuand-1ine argunent).
8 * @hrows NoNanmeException if 'args' contains no el enent.

9 */

10 public static String getNane(String[] args) throws NoNaneException {

11 if(args.length == 0) {

12 t hrow new NoNameException();

13 } else {

14 return args[0];

15 }

16 }

References

® J. Bloch, Effective Java (second edition), ltem 44. Addison-Wesley, 2008.

® Help - Eclipse Platform: Java Compiler Javadoc Preferences.

® Java SE Documentation: How to Write Doc Comments for the Javadoc Tool, Requirements for Writing
Java API Specifications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 308

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

Include a Javadoc tag for the return value of a public method or constructor

...

Category: Advisory > Documentation

Description: A public method that does not have a Javadoc tag for its return value affects maintainability.

...

A public method that does not have a Javadoc tag for its return value makes an APl more difficult to understand
and maintain.

Recommendation
The Javadoc comment for a method should include a Javadoc tag element that describes the return value.
Example

The following example shows a good Javadoc comment, which clearly explains the method's return value.

l /**

2 * Extracts the user's name fromthe input argunents.

3 *

4 * Precondition: 'args' should contain at |east one elenment, the user's nane.
5 *

6 * @aram args t he command-1ine argunents.

7 * @eturn the user's nane (the first commuand-1line argunent).
8 * @hrows NoNaneException if 'args' contains no el enent.

9 =/

10 public static String getNane(String[] args) throws NoNanmeException {

11 if(args.length == 0) {

12 t hrow new NoNaneException();

13 } else {

14 return args[0];

15 }

16 }

References

* J. Bloch, Effective Java (second edition), ltem 44. Addison-Wesley, 2008.

® Help - Eclipse Platform: Java Compiler Javadoc Preferences.

® Java SE Documentation: How to Write Doc Comments for the Javadoc Tool, Requirements for Writing
Java API Specifications.

JPL Java Coding Standard v1.0 March 31, 2014. Page 309

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/preferences/java/compiler/ref-preferences-javadoc.htm
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html
http://www.oracle.com/technetwork/java/javase/documentation/index-142372.html

Advisory rules

Java Objects (1)

® Avoid overriding 'Object.clone'

® Avoid overriding 'Object.finalize'

® Avoid using a method that overrides 'Object.clone’
® Avoid using the 'Cloneable’ interface

JPL Java Coding Standard v1.0 March 31, 2014. Page 310

Advisory rules

Avoid overriding 'Object.clone’

...

Category: Advisory > Java Objects (1)

Description: Overriding 'Object.clone’ is bad practice. Copying an object using the 'Cloneable interface’
and 'Object.clone’ is error-prone.

Copying an object using the d oneabl e interface and the j ect . cl one method is error-prone. This is because the
d oneabl e interface and the cl one method are unusual:

® The d oneabl e interface has no methods. Its only use is to trigger different behavior of j ect . cl one.
® j ect. cl one is protected.
® j ect. cl one creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of cl one: first,
make the class implement c oneabl e to change the behavior of avj ect . cl one so that it makes a copy instead of
throwing a d oneNot Suppor t edExcept i on; second, override cl one to make it public, to allow it to be called. Another
consequence of d oneabl e not having any methods is that it does not say anything about an object that
implements it, which means that you cannot perform a polymorphic clone operation.

The third point, j ect . cl one creating a shallow copy, is the most serious one. A shallow copy shares internal
state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the d oneabl e interface and
the vj ect . cl one method, without the subtlety involved in implementing and using cl one correctly.

Example

In the following example, class Gal axy includes a copy constructor. Its parameter is of type Gal axy.

public final class Galaxy {

1

2

3 /1 This is the original constructor.

4 public Gal axy (double aMass, String aNane) {
5 f Mass = aMass;

6 f Name = aNane;

7

8

}
9 /1 This is the copy constructor.
10 public Gal axy(Gal axy aGal axy) {
11 t hi s(aGal axy. get Mass(), aGal axy. get Nane());
12 }
13
14 /1
15 }
References

® J. Bloch, Effective Java (second edition), Item 11. Addison-Wesley, 2008.
® Java Platform, Standard Edition 6, API Specification: Interface Cloneable, Object.clone.

JPL Java Coding Standard v1.0 March 31, 2014. Page 311

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

Avoid overriding 'Object.finalize'

Category: Advisory > Java Objects (1)

Description: Overriding 'Object.finalize' is not a reliable way to terminate use of resources.

i
...

Overriding the j ect . fi nal i ze method is not a reliable way to terminate use of resources. In particular, there are
no guarantees regarding the timeliness of finalizer execution.

Recommendation
Provide explicit termination methods, which should be called by users of an API.

References

® J. Bloch, Effective Java (second edition), Iltem 7. Addison-Wesley, 2008.
® Java Language Specification: 12.6. Finalization of Class Instances.

JPL Java Coding Standard v1.0 March 31, 2014. Page 312

http://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.6

Advisory rules

Avoid using a method that overrides 'Object.clone’

...

Category: Advisory > Java Objects (1)

Description: Calling a method that overrides 'Object.clone’ is bad practice. Copying an object using the
‘Cloneable interface’ and 'Object.clone’ is error-prone.

Copying an object using the d oneabl e interface and the j ect . cl one method is error-prone. This is because the
d oneabl e interface and the cl one method are unusual:

® The d oneabl e interface has no methods. Its only use is to trigger different behavior of j ect . cl one.
® j ect. cl one is protected.
® j ect. cl one creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of cl one: first,
make the class implement c oneabl e to change the behavior of avj ect . cl one so that it makes a copy instead of
throwing a d oneNot Suppor t edExcept i on; second, override cl one to make it public, to allow it to be called. Another
consequence of d oneabl e not having any methods is that it does not say anything about an object that
implements it, which means that you cannot perform a polymorphic clone operation.

The third point, j ect . cl one creating a shallow copy, is the most serious one. A shallow copy shares internal
state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the d oneabl e interface and
the vj ect . cl one method, without the subtlety involved in implementing and using cl one correctly.

Example

In the following example, class Gal axy includes a copy constructor. Its parameter is of type Gal axy.

public final class Galaxy {

1

2

3 /1 This is the original constructor.

4 public Gal axy (double aMass, String aNane) {
5 f Mass = aMass;

6 f Name = aNane;

7

8

}
9 /1 This is the copy constructor.
10 public Gal axy(Gal axy aGal axy) {
11 t hi s(aGal axy. get Mass(), aGal axy. get Nane());
12 }
13
14 /1
15 }
References

® J. Bloch, Effective Java (second edition), Item 11. Addison-Wesley, 2008.
® Java Platform, Standard Edition 6, API Specification: Interface Cloneable, Object.clone.

JPL Java Coding Standard v1.0 March 31, 2014. Page 313

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

Avoid using the 'Cloneable’ interface

...

Category: Advisory > Java Objects (1)

Description: Using the 'Cloneable’ interface is bad practice. Copying an object using the ‘Cloneable
interface' and 'Object.clone' is error-prone.

Copying an object using the d oneabl e interface and the j ect . cl one method is error-prone. This is because the
d oneabl e interface and the cl one method are unusual:

® The d oneabl e interface has no methods. Its only use is to trigger different behavior of j ect . cl one.
® j ect. cl one is protected.
® j ect. cl one creates a shallow copy without calling a constructor.

The first two points mean that a programmer must do two things to get a useful implementation of cl one: first,
make the class implement c oneabl e to change the behavior of avj ect . cl one so that it makes a copy instead of
throwing a d oneNot Suppor t edExcept i on; second, override cl one to make it public, to allow it to be called. Another
consequence of d oneabl e not having any methods is that it does not say anything about an object that
implements it, which means that you cannot perform a polymorphic clone operation.

The third point, j ect . cl one creating a shallow copy, is the most serious one. A shallow copy shares internal
state with the original object. This includes private fields that the programmer might not be aware of. A change to
the internal state of the original object could affect the copy, and conversely the opposite is true, which could
easily lead to unexpected behavior.

Recommendation

Define either a dedicated copy method or a copy constructor (with a parameter whose type is the same as the
type that declares the constructor). In most cases, this is at least as good as using the d oneabl e interface and
the vj ect . cl one method, without the subtlety involved in implementing and using cl one correctly.

Example

In the following example, class Gal axy includes a copy constructor. Its parameter is of type Gal axy.

public final class Galaxy {

1

2

3 /1 This is the original constructor.

4 public Gal axy (double aMass, String aNane) {
5 f Mass = aMass;

6 f Name = aNane;

7

8

}
9 /1 This is the copy constructor.
10 public Gal axy(Gal axy aGal axy) {
11 t hi s(aGal axy. get Mass(), aGal axy. get Nane());
12 }
13
14 /1
15 }
References

® J. Bloch, Effective Java (second edition), Item 11. Addison-Wesley, 2008.
® Java Platform, Standard Edition 6, API Specification: Interface Cloneable, Object.clone.

JPL Java Coding Standard v1.0 March 31, 2014. Page 314

http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#clone%28%29

Advisory rules

Naming (1)

Begin a class or interface name with an uppercase letter
Begin a method name with a lowercase letter

Begin a variable name with a lowercase letter

Use lowercase letters throughout a package name

Use uppercase letters throughout a constant name

JPL Java Coding Standard v1.0 March 31, 2014. Page 315

Advisory rules

Begin a class or interface name with an uppercase letter

...
v

Category: Advisory > Naming (1)

Description: A class or interface name that begins with a lowercase letter decreases readability.

'
...

A class or interface name that begins with a lowercase letter does not follow standard naming conventions, which
decreases code readability. For example, hot el booki ng.

Recommendation

Begin the class name with an uppercase letter and use camel case: capitalize the first letter of each word within
the class name. For example, Hot el Booki ng.

References
* J. Bloch, Effective Java (second edition), Item 56. Addison-Wesley, 2008.

® Java Language Specification: 6.1. Declarations.
® Java SE Documentation: 9 - Naming Conventions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 316

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

Begin a method name with a lowercase letter

Category: Advisory > Naming (1)

Description: A method name that begins with an uppercase letter decreases readability.

i
...

A method name that begins with an uppercase letter does not follow standard naming conventions, which
decreases code readability. For example, Get backgr ound.

Recommendation

Begin the method name with a lowercase letter and use camel case: capitalize the first letter of each word within
the method name. For example, get Backgr ound.

References

* J. Bloch, Effective Java (second edition), Item 56. Addison-Wesley, 2008.
® Java Language Specification: 6.1. Declarations.
® Java SE Documentation: 9 - Naming Conventions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 317

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

Begin a variable name with a lowercase letter

Category: Advisory > Naming (1)

Description: A variable name that begins with an uppercase letter decreases readability.

...

A variable name that begins with an uppercase letter does not follow standard naming conventions, which
decreases code readability. For example, Nurber of guest s. This applies to local variables, parameters, and
non-constant fields.

Recommendation

Begin the variable name with a lowercase letter and use camel case: capitalize the first letter of each word within
the variable name. For example, nunber O Guest s.

References

® J. Bloch, Effective Java (second edition), ltem 56. Addison-Wesley, 2008.
® Java Language Specification: 6.1. Declarations.
® Java SE Documentation: 9 - Naming Conventions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 318

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

Use lowercase letters throughout a package name

...
i

Category: Advisory > Naming (1)

Description: A package name that contains uppercase letters decreases readability.

i
...

A package name that contains uppercase letters does not follow standard naming conventions, which decreases
code readability. For example, Com Sun. Eng.

Recommendation
Use lowercase letters throughout a package name. For example, com sun. eng.

References

® J. Bloch, Effective Java (second edition), Item 56. Addison-Wesley, 2008.
® Java Language Specification: 6.1. Declarations.
® Java SE Documentation: 9 - Naming Conventions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 319

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

Use uppercase letters throughout a constant name

...
v

Category: Advisory > Naming (1)

Description: A static, final field name that contains lowercase letters decreases readability.

'
...

A static, final field name that contains lowercase letters does not follow standard naming conventions, which
decreases code readability. For example, M n_w dt h.

Recommendation

Use uppercase letters throughout a static, final field name, and use underscores to separate words within the
field name. For example, M N_W DTH.

References

* J. Bloch, Effective Java (second edition), Item 56. Addison-Wesley, 2008.
® Java Language Specification: 6.1. Declarations.
® Java SE Documentation: 9 - Naming Conventions.

JPL Java Coding Standard v1.0 March 31, 2014. Page 320

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.1
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

Advisory rules

Statements

® Avoid writing more than one statement per line
® Include a 'default' case in a 'switch' statement
® |nclude a terminating 'else’ clause in an 'if-else-if' statement

JPL Java Coding Standard v1.0 March 31, 2014. Page 321

Advisory rules

Avoid writing more than one statement per line

...

Category: Advisory > Statements

Description: More than one statement per line decreases readability.

...

Code where each statement is defined on a separate line is much easier for programmers to read than code
where multiple statements are defined on the same line.

Recommendation

Separate statements by a newline character.

References

® Java SE Documentation: 7.1 Simple Statements.

JPL Java Coding Standard v1.0 March 31, 2014. Page 322

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#431

Advisory rules

Include a 'default' case in a 'switch' statement

...

Category: Advisory > Statements

Description: A 'switch' statement that is based on a non-enumerated type and that does not have a
'default’ case may allow execution to ‘fall through' silently.

A swi t ch statement without a def aul t case may allow execution to 'fall through' silently, if no cases are matched.

Recommendation

In a swi t ch statement that is based on a variable of a non-enumerated type, include a def aul t case to prevent
execution from falling through silently when no cases are matched. If the def aul t case is intended to be
unreachable code, it is advisable that it throws a Runt i reExcept i on to alert the user of an internal error.

Example

In the following example, the swi t ch statement outputs the menu choice that the user has made. However, if the
user does not choose 1, 2, or 3, execution falls through silently.

1 int menuChoi ce;

2

3 /1

4

5 switch (menuChoice) {

6 case 1:

7 System out. println("You chose nunber 1.");
8 br eak;

9 case 2:

10 Systemout. println("You chose nunber 2.");
11 br eak;

12 case 3:

13 System out. println("You chose nunber 3.");
14 br eak;

15 /1 BAD: No 'default' case

16 }

In the following modified example, the swi t ch statement includes a def aul t case, to allow for the user making an
invalid menu choice.

1 int menuChoi ce;

2

3 /1

4

5 swi tch (menuChoice) {

6 case 1:

7 System out. println("You chose nunber 1.");

8 br eak;

9 case 2:

10 System out. println("You chose nunber 2.");

11 br eak;

12 case 3:

13 System out. println("You chose nunber 3.");

14 br eak;

15 default: // GOCD: 'default' case for invalid choices
16 Systemout.printin("Sorry, you nade an invalid choice.");
17 br eak;

18 }

JPL Java Coding Standard v1.0 March 31, 2014. Page 323

Advisory rules

References

® Java SE Documentation: 7.8 switch Statements.

JPL Java Coding Standard v1.0 March 31, 2014. Page 324

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#468

Advisory rules

Include a terminating 'else' clause in an 'if-else-if' statement

...

Category: Advisory > Statements

Description: An 'if-else-if' statement without a terminating 'else’ clause may allow execution to 'fall
through' silently.

Anif-else-if statement without a terminating el se clause may allow execution to 'fall through' silently, if none of
theif clauses are matched.

Recommendation

Include a terminating el se clause to i f - el se-i f statements to prevent execution from falling through silently. If the
terminating el se clause is intended to be unreachable code, it is advisable that it throws a Runt i mneExcept i on to
alert the user of an internal error.

Example

In the following example, the i f statement outputs the grade that is achieved depending on the test score.
However, if the score is less than 60, execution falls through silently.

1 int score;

2 char grade;

3

4 1/

5

6 if (score >= 90) {

7 grade = 'A';

8 } else if (score >= 80) {

9 grade = 'B';

10 } else if (score >= 70) {

11 grade = 'C;

12 } else if (score >= 60) {

13 grade = 'D;

14 /1 BAD: No terminating 'else' clause
15 }

16 Systemout.println("Gade =" + grade);

In the following modified example, the i f statement includes a terminating el se clause, to allow for scores that
are less than 60.

1 int score;

2 char grade;

3

4 11

5

6 if (score >= 90) {

7 grade = 'A';

8 } else if (score >= 80) {

9 grade = 'B';

10 } else if (score >= 70) {

11 grade = 'C;

12 } else if (score >= 60) {

13 grade = 'D;

14 } else { // GOOD: Termnating 'else' clause for all other scores
15 grade = 'F';

16 }

17 Systemout.println("Gade =" + grade);

JPL Java Coding Standard v1.0 March 31, 2014. Page 325

Advisory rules

References

® Java SE Documentation: 7.4 if, if-else, if else-if else Statements.

JPL Java Coding Standard v1.0 March 31, 2014. Page 326

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-142311.html#449

Advisory rules

Types (1)

® Provide type parameters in call to a constructor of a generic type
® Provide type parameters to generic types
® Use a parameterized instance of a generic type for a method return type

JPL Java Coding Standard v1.0 March 31, 2014. Page 327

Advisory rules

Provide type parameters in call to a constructor of a generic type

...

Category: Advisory > Types (1)

Description: Parameterizing a call to a constructor of a generic type increases type safety and code
readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation
Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawLi st (Object 0) {

2 List list; // Raw variable declaration

3 list = new ArrayList(); // Raw constructor call

4 l'ist.add(o);

5 return list; // Raw nethod return type (see signature above)
6

}

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParaneterizedList(T o) {

2 List<T> list; // Paraneterized variable declaration

3 list = new ArrayList<T>(); // Paraneterized constructor call

4 l'i st.add(o);

5 return list; // Paraneterized nmethod return type (see signature above)
6

}

References

* J. Bloch, Effective Java (second edition), Item 23. Addison-Wesley, 2008.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® The Java Tutorials: Generics, Converting Legacy Code to Use Generics.

JPL Java Coding Standard v1.0 March 31, 2014. Page 328

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

Advisory rules

Provide type parameters to generic types

Category: Advisory > Types (1)

Description: Declaring a field, parameter, or local variable as a parameterized type increases type safety
and code readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation
Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawLi st (Object 0) {

2 List list; // Raw variable declaration

3 list = new ArrayList(); // Raw constructor call

4 l'ist.add(o);

5 return list; // Raw nethod return type (see signature above)
6

}

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParaneterizedList(T o) {

2 List<T> list; // Paraneterized variable declaration

3 list = new ArrayList<T>(); // Paraneterized constructor call

4 l'i st.add(o);

5 return list; // Paraneterized nmethod return type (see signature above)
6

}

References

* J. Bloch, Effective Java (second edition), Item 23. Addison-Wesley, 2008.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® The Java Tutorials: Generics, Converting Legacy Code to Use Generics.

JPL Java Coding Standard v1.0 March 31, 2014. Page 329

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

Advisory rules

Use a parameterized instance of a generic type for a method return type

Category: Advisory > Types (1)

Description: Using a parameterized instance of a generic type for a method return type increases type
safety and code readability.

The use of generics in Java improves compile-time type safety and code readability. Users of a class or interface
that has been designed using generic types should therefore make use of parameterized instances in variable
declarations, method return types, and constructor calls.

Recommendation
Provide type parameters to generic classes and interfaces where possible.

Note that converting legacy code to use generics may have to be done carefully in order to preserve the existing
functionality of an API; for detailed guidance, see the references.

Example

The following example is poorly written because it uses raw types. This makes it more error prone because the
compiler is less able to perform type checks.

1 public List constructRawLi st (Object 0) {

2 List list; // Raw variable declaration

3 list = new ArrayList(); // Raw constructor call

4 l'ist.add(o);

5 return list; // Raw nethod return type (see signature above)
6

}

A parameterized version can be easily made and is much safer.

1 public <T> List<T> constructParaneterizedList(T o) {

2 List<T> list; // Paraneterized variable declaration

3 list = new ArrayList<T>(); // Paraneterized constructor call

4 l'i st.add(o);

5 return list; // Paraneterized nmethod return type (see signature above)
6

}

References

* J. Bloch, Effective Java (second edition), Item 23. Addison-Wesley, 2008.
® Help - Eclipse Platform: Java Compiler Errors/Warnings Preferences.
® The Java Tutorials: Generics, Converting Legacy Code to Use Generics.

JPL Java Coding Standard v1.0 March 31, 2014. Page 330

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/extra/generics/convert.html

	JPL Java Coding Standard
	Critical
	Arithmetic
	Avoid casting the result of integer multiplication to type 'long'
	Avoid implicit narrowing in compound assignment
	Avoid type mismatch in conditional expressions
	Avoid using octal literals
	Do not test floating point equality

	Concurrency
	API Misuse
	Avoid ineffective thread definitions
	Avoid setting thread priorities
	Avoid using 'notify'
	Do not call 'Thread.yield'
	Do not spin on field
	Do not start a thread in a constructor

	Synchronization
	Avoid data races by accessing shared variables under synchronization
	Avoid empty synchronized blocks
	Avoid inconsistent synchronization for 'writeObject'
	Avoid inconsistent synchronization of overriding methods
	Avoid synchronizing 'set' but not 'get'
	Do not synchronize on a field and update it

	Thread Safety
	Avoid lazy initialization of a static field
	Avoid static fields of type 'DateFormat' (or its descendants)
	Ensure that a method releases locks on exit

	Waiting
	Avoid calling 'Object.wait' while two locks are held
	Avoid calling 'Thread.sleep' with a lock held
	Avoid calling 'wait' on a 'Condition' interface
	Avoid controlling thread interaction by using ineffective or wasteful methods
	Do not call 'wait' outside a loop

	Declarations
	Avoid ambiguity when calling a method that is in both a superclass and an outer class
	Avoid confusing non-override of package-private method
	Avoid hiding a field in a super class
	Include 'break' in a 'case' statement

	Encapsulation
	Avoid casting from an abstract collection to a concrete implementation type
	Avoid declaring array constants
	Avoid defining an interface (or abstract class) only to hold constants

	Equality
	Avoid comparing arrays using 'Object.equals'
	Avoid comparing object identity of boxed types
	Avoid comparing object identity of strings
	Avoid hashed instances that do not define 'hashCode'
	Avoid overriding 'compareTo' but not 'equals'
	Avoid overriding only one of 'equals' and 'hashCode'
	Avoid possible inconsistency due to 'instanceof' in 'equals'
	Avoid reference comparisons with operands of type 'Object'
	Avoid unintentionally overloading 'Object.equals'
	Do not make calls of the form 'x.equals(y)' with incomparable types
	Ensure that an implementaton of 'equals' inspects its argument type

	Exceptions
	Avoid catching 'Throwable' or 'Exception'
	Do not dereference a variable that is 'null'
	Ensure that 'finally' blocks complete normally

	Expressions
	Avoid accidentally assigning to a local variable in a 'return' statement
	Avoid accidentally using a bitwise logical operator instead of a conditional operator

	Extensibility
	Avoid calling 'getClass().getResource()'
	Avoid forcible termination of the JVM

	Incomplete Code
	Avoid empty blocks or statements
	Avoid empty statements
	Ensure that a 'switch' includes cases for all 'enum' constants

	Java objects
	Cloning
	Ensure that a subclass 'clone' method calls 'super.clone'

	Garbage collection
	Do not call 'System.runFinalizersOnExit' or 'Runtime.runFinalizersOnExit'

	Serialization
	Ensure that a 'serialVersionUID' field that is declared in a serializable class is of the correct type
	Ensure that a class that implements 'Comparator' and is used to construct a sorted collection is serializable
	Ensure that a non-serializable, immediate superclass of a serializable class declares a default constructor
	Ensure that a non-static, serializable nested class is enclosed in a serializable class

	Logic Errors
	Annotate annotations with a 'RUNTIME' retention policy
	Avoid array downcasts
	Avoid type mismatch when calling 'Collection.contains'
	Avoid type mismatch when calling 'Collection.remove'
	Do not call a non-final method from a constructor
	Do not perform self-assignment
	Include braces for control structures

	Naming
	Avoid declaring a method with the same name as its declaring type
	Avoid naming a method with the same name as a superclass method but with different capitalization

	Random
	Avoid using 'Math.abs' to generate a non-negative random integer

	Resource Leaks
	Ensure that an input resource is closed on completion
	Ensure that an output resource is closed on completion

	Strings
	Avoid appending an array to a string without converting it to a string
	Avoid calling the default implementation of 'toString'
	Avoid printing an array without converting it to a string

	Types
	Avoid boxed types

	Important
	Arithmetic (1)
	Avoid checking the sign of the result of a bitwise operation
	Avoid confusion when multiplying a remainder by an integer
	Do not check parity by comparing to a positive number

	Complexity
	Avoid creating classes that have a high response
	Avoid creating methods that call many other methods
	Avoid creating methods that have a high cyclomatic complexity

	Concurrency (1)
	API Misuse (1)
	Do not directly call 'run'

	Coupling
	Avoid creating classes that depend on many other types
	Avoid feature envy from a method to a class
	Avoid hub classes
	Avoid inappropriate intimacy between classes

	Declarations (2)
	Avoid assignment to parameters in a method or constructor
	Avoid using the same name for a field and a variable

	Duplicate Code
	Avoid duplicate anonymous classes
	Avoid duplicate methods
	Avoid mostly duplicate classes
	Avoid mostly duplicate files
	Avoid mostly duplicate methods
	Avoid mostly similar files

	Encapsulation (1)
	Avoid creating classes that lack cohesion
	Avoid creating subclasses that have a high specialization index
	Avoid exposing an object's internal representation

	Equality (1)
	Avoid unintentionally overloading 'Comparable.compareTo'
	Redefine 'equals' in subclasses that have additional fields

	Exceptions (1)
	Avoid dereferencing a variable that may be 'null'
	Avoid unreachable 'catch' clauses
	Do not drop an exception

	Expressions (1)
	Avoid assignments in Boolean expressions
	Avoid very complex conditions

	Extensibility (1)
	Avoid writing to a static field from an instance method

	Incomplete Code (1)
	Do not include empty 'finalize' methods
	Ensure that 'TODO' or 'FIXME' comments are resolved
	Ensure that 'ZipOutputStream.write' is called when writing a ZIP file

	Inefficient Code
	Avoid calling 'Collection.toArray' with a zero-length array argument
	Avoid calling a boxed type's constructor directly
	Avoid checking a string for equality with an empty string
	Avoid iterating through a map using its key set
	Avoid non-static nested classes unless necessary
	Avoid performing string concatenation in a loop
	Avoid using the 'String(String)' constructor

	Java objects (2)
	Cloning (1)
	Ensure that a class that implements 'Cloneable' overrides 'clone'

	Garbage collection (1)
	Do not set fields to 'null' in a finalizer
	Do not trigger garbage collection explicitly
	Ensure that a 'finalize' method calls 'super.finalize'

	Serialization (1)
	Do not use 'transient' in a non-serializable class
	Ensure that 'readResolve' has the correct signature
	Ensure that a class that implements 'Externalizable' has a public no-argument constructor
	Ensure that each non-transient, non-static field in a serializable class is serializable
	Ensure that the signatures of 'readObject' and 'writeObject' on a serializable class are correct

	JUnit
	Ensure that a JUnit test case class contains correctly declared test methods
	Ensure that a JUnit test method that overrides 'tearDown' calls 'super.tearDown'
	Use the correct signature for a 'suite' method in JUnit

	Logic Errors (1)
	Avoid extending or implementing an annotation
	Avoid nested loops that use the same variable
	Do not compare identical expressions

	Magic Constants
	Avoid magic numbers and add a named constant
	Avoid magic numbers and use an existing named constant
	Avoid magic strings and add a named constant
	Avoid magic strings and use an existing named constant

	Naming (2)
	Avoid declaring a method with the name 'equal'
	Avoid declaring a method with the name 'hashcode'
	Avoid declaring a method with the name 'tostring'
	Avoid methods in the same class whose names differ only in capitalization
	Avoid naming a class with the same name as its superclass
	Avoid overloaded methods that have similar parameter types
	Avoid using 'enum' as an identifier

	Random (1)
	Do not create an instance of 'Random' for each pseudo-random number required

	Result Checking
	Avoid calling 'next' from an iterator implementation of 'hasNext'
	Do not ignore a method's return value
	Ensure that the results of all method calls are used
	Handle the results of calls to a particular method consistently

	Size
	Avoid creating classes that contain many fields
	Avoid creating files that contain many lines of code
	Avoid creating methods that contain many levels of nesting
	Avoid creating methods that contain many lines of code
	Avoid creating methods that have many parameters
	Avoid too many complex statements in a block
	Review files that have been changed by many authors

	Spring
	Add 'description' elements to Spring bean definitions
	A non-abstract parent Spring bean must not specify an abstract class
	Avoid defining too many Spring beans in the same file
	Avoid overriding a property with the same contents in a child Spring bean
	Avoid using autowiring in Spring beans
	Create a common parent bean for Spring beans that share properties
	Ensure that each property in a Spring bean definition has a matching setter
	Put 'import' statements before Spring bean definitions
	Use 'id' instead of 'name' to name a Spring bean
	Use a type name instead of an index number in a Spring 'constructor-arg' element
	Use local references when referring to Spring beans in the same file
	Use setter injection instead of constructor injection when using Spring
	Use shortcut forms in Spring bean definitions

	Strings (1)
	Avoid calling 'toString' on a string
	Avoid calling 'toUpperCase()' or 'toLowerCase()' without specifying the locale

	Swing
	Avoid calling Swing methods from a thread other than the event-dispatching thread
	Ensure that event handler overrides have exactly the right name

	Types (2)
	Avoid naming a type variable the same as another type that is in scope
	Avoid trying to extend a final type using a wildcard
	Do not call a varargs method with an ambiguous argument

	Useless Code
	Avoid futile assignments to a local variable
	Avoid local variables that are never read
	Avoid redundant types
	Avoid unnecessary 'import' statements
	Avoid unnecessary casts
	Avoid unused fields
	Avoid unused labels
	Ensure that fields are explicitly initialized
	Ensure that interface methods are compatible with 'java.lang.Object'

	Advisory
	Declarations (1)
	Avoid implicit imports
	Declare immutable fields 'final'
	Do not make mutable fields public
	Use '@Override' annotation when overriding a method

	Deprecated Code
	Avoid using a deprecated method or constructor

	Documentation
	Include a Javadoc comment for each public class or interface
	Include a Javadoc comment for each public method or constructor
	Include a Javadoc tag for each exception thrown by a public method or constructor
	Include a Javadoc tag for each parameter of a public method or constructor
	Include a Javadoc tag for the return value of a public method or constructor

	Java Objects (1)
	Avoid overriding 'Object.clone'
	Avoid overriding 'Object.finalize'
	Avoid using a method that overrides 'Object.clone'
	Avoid using the 'Cloneable' interface

	Naming (1)
	Begin a class or interface name with an uppercase letter
	Begin a method name with a lowercase letter
	Begin a variable name with a lowercase letter
	Use lowercase letters throughout a package name
	Use uppercase letters throughout a constant name

	Statements
	Avoid writing more than one statement per line
	Include a 'default' case in a 'switch' statement
	Include a terminating 'else' clause in an 'if-else-if' statement

	Types (1)
	Provide type parameters in call to a constructor of a generic type
	Provide type parameters to generic types
	Use a parameterized instance of a generic type for a method return type

